Inégalités d’énergie et solutions d’équations d’ondes en métrique courbe

Serge Alinhac[1]

  • [1] Département de Mathématiques, Université Paris-Sud, 91405 Orsay, France

Séminaire Équations aux dérivées partielles (2003-2004)

  • page 1-10

How to cite

top

Alinhac, Serge. "Inégalités d’énergie et solutions d’équations d’ondes en métrique courbe." Séminaire Équations aux dérivées partielles (2003-2004): 1-10. <http://eudml.org/doc/11093>.

@article{Alinhac2003-2004,
affiliation = {Département de Mathématiques, Université Paris-Sud, 91405 Orsay, France},
author = {Alinhac, Serge},
journal = {Séminaire Équations aux dérivées partielles},
language = {fre},
pages = {1-10},
publisher = {Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Inégalités d’énergie et solutions d’équations d’ondes en métrique courbe},
url = {http://eudml.org/doc/11093},
year = {2003-2004},
}

TY - JOUR
AU - Alinhac, Serge
TI - Inégalités d’énergie et solutions d’équations d’ondes en métrique courbe
JO - Séminaire Équations aux dérivées partielles
PY - 2003-2004
PB - Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 10
LA - fre
UR - http://eudml.org/doc/11093
ER -

References

top
  1. Alinhac S., “Remarks on Energy Inequalities for Wave and Maxwell Equations on a Curved Background”, Preprint, Université Paris-Sud, (2003), à paraitre dans Math. Annalen. Zbl1065.35075
  2. Alinhac S., “An Example of Blowup at Infinity for a Quasilinear Wave Equation”, Astérisque 284, (2003), 1-91. Zbl1053.35097
  3. Alinhac S., “Free Decay of Solutions to Wave Equations on a Curved Background”, Preprint, Université Paris-Sud, (2003), à paraitre au Bull. Soc. Math. France. Zbl1096.35013
  4. Alinhac S., “Free Decay of Solutions to Wave Equations on a Curved Background”, à paraitre, Actes du Colloque d’Hammamet, (2003). Zbl1096.35013
  5. Christodoulou D. and Klainerman S., “The global nonlinear stability of the Minkowski space”, Princeton Math. series 41, (1993). Zbl0827.53055
  6. Hörmander L., “Lectures on Nonlinear Hyperbolic Differential Equations”, Math. et Appl. 26, Springer Verlag, (1997). Zbl0881.35001
  7. Klainerman S., “A Commuting Vectorfields Approach to Strichartz type Inequalities and Applications to Quasilinear Wave Equations”, Int. Math. Res. Notices 5, (2001), 221-274. Zbl0993.35022
  8. Klainerman S. and Nicolò F., “The Evolution Problem in General Relativity”, Progress in Mathematical Physics 25, Birkhäuser, (2002). Zbl1010.83004
  9. Klainerman S. and Rodniansky I., “ Improved local well posedness for quasilinear wave equations in dimension three”, to appear, Duke Math. J. , (2002). Zbl1031.35091
  10. Klainerman S. and Sideris T., “On Almost Global Existence for Nonrelativistic Wave Equations in 3D”, Comm. Pure Appl. Math. XLIX, (1996), 307-321. Zbl0867.35064

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.