Invariance of global solutions of the Hamilton-Jacobi equation

Ezequiel Maderna

Bulletin de la Société Mathématique de France (2002)

  • Volume: 130, Issue: 4, page 493-506
  • ISSN: 0037-9484

Abstract

top
We show that every global viscosity solution of the Hamilton-Jacobi equation associated with a convex and superlinear Hamiltonian on the cotangent bundle of a closed manifold is necessarily invariant under the identity component of the group of symmetries of the Hamiltonian (we prove that this group is a compact Lie group). In particular, every Lagrangian section invariant under the Hamiltonian flow is also invariant under this group.

How to cite

top

Maderna, Ezequiel. "Invariance of global solutions of the Hamilton-Jacobi equation." Bulletin de la Société Mathématique de France 130.4 (2002): 493-506. <http://eudml.org/doc/272418>.

@article{Maderna2002,
abstract = {We show that every global viscosity solution of the Hamilton-Jacobi equation associated with a convex and superlinear Hamiltonian on the cotangent bundle of a closed manifold is necessarily invariant under the identity component of the group of symmetries of the Hamiltonian (we prove that this group is a compact Lie group). In particular, every Lagrangian section invariant under the Hamiltonian flow is also invariant under this group.},
author = {Maderna, Ezequiel},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Hamilton-Jacobi; lagrangian; symmetries},
language = {eng},
number = {4},
pages = {493-506},
publisher = {Société mathématique de France},
title = {Invariance of global solutions of the Hamilton-Jacobi equation},
url = {http://eudml.org/doc/272418},
volume = {130},
year = {2002},
}

TY - JOUR
AU - Maderna, Ezequiel
TI - Invariance of global solutions of the Hamilton-Jacobi equation
JO - Bulletin de la Société Mathématique de France
PY - 2002
PB - Société mathématique de France
VL - 130
IS - 4
SP - 493
EP - 506
AB - We show that every global viscosity solution of the Hamilton-Jacobi equation associated with a convex and superlinear Hamiltonian on the cotangent bundle of a closed manifold is necessarily invariant under the identity component of the group of symmetries of the Hamiltonian (we prove that this group is a compact Lie group). In particular, every Lagrangian section invariant under the Hamiltonian flow is also invariant under this group.
LA - eng
KW - Hamilton-Jacobi; lagrangian; symmetries
UR - http://eudml.org/doc/272418
ER -

References

top
  1. [1] G. Contreras, J. Delgado & R. Iturriaga – « Lagrangian flows: the dynamics of globally minimizing orbits, II », Bol. Soc. Bras. Mat. 28 (1997), no. 2, p. 155–196. Zbl0892.58065MR1479500
  2. [2] A. Fathi – « Solutions KAM faibles conjugués et barrières de Peierls », C. R. Acad. Sci. Paris, Série I 325 (1997), p. 649–652. Zbl0943.37031MR1473840
  3. [3] —, « Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens », C. R. Acad. Sci. Paris, Série I 324 (1997), p. 1043–1046. Zbl0885.58022MR1451248
  4. [4] —, « Weak KAM Theorem in Lagrangian Dynamics », Preprint, 2000. 
  5. [5] A. Fathi & E. Maderna – « Weak KAM Theorem on Non Compact Manifolds », Preprint, 2000. Zbl1139.49027MR2346451
  6. [6] S. Kobayashi – Transformation Groups in Differential Geometry, Springer-Verlag, 1995, reprint of the 1972 ed. Zbl0246.53031MR355886
  7. [7] R. Mañé – « Lagrangian flows: the dynamics of globally minimizing orbits », Bol. Soc. Bras. Mat. 28 (1997), no. 2, p. 141–153. Zbl0892.58064MR1479499
  8. [8] J. Mather – « Action minimizing measures for positive definite Lagrangian systems », Math. Z.207 (1991), p. 169–207. Zbl0696.58027MR1109661
  9. [9] D. Montgomery & L. Zippin – Transformation Groups, Interscience Tracts, vol. 1, J. Wiley & Sons, 1955. MR73104
  10. [10] G. Paternain & M. Paternain – « Critical values of autonomous Lagrangian systems », Comment. Math. Helvetici72 (1997), p. 481–499. Zbl0921.58017MR1476061
  11. [11] W. Ziemer – Weakly Differentiable Functions, Springer-Verlag, 1989. Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.