Estimates of the Kobayashi-Royden metric in almost complex manifolds

Hervé Gaussier; Alexandre Sukhov

Bulletin de la Société Mathématique de France (2005)

  • Volume: 133, Issue: 2, page 259-273
  • ISSN: 0037-9484

Abstract

top
We establish a lower estimate for the Kobayashi-Royden infinitesimal pseudometric on an almost complex manifold ( M , J ) admitting a bounded strictly plurisubharmonic function. We apply this result to study the boundary behaviour of the metric on a strictly pseudoconvex domain in M and to give a sufficient condition for the complete hyperbolicity of a domain in ( M , J ) .

How to cite

top

Gaussier, Hervé, and Sukhov, Alexandre. "Estimates of the Kobayashi-Royden metric in almost complex manifolds." Bulletin de la Société Mathématique de France 133.2 (2005): 259-273. <http://eudml.org/doc/272419>.

@article{Gaussier2005,
abstract = {We establish a lower estimate for the Kobayashi-Royden infinitesimal pseudometric on an almost complex manifold $(M,J)$ admitting a bounded strictly plurisubharmonic function. We apply this result to study the boundary behaviour of the metric on a strictly pseudoconvex domain in $M$ and to give a sufficient condition for the complete hyperbolicity of a domain in $(M,J)$.},
author = {Gaussier, Hervé, Sukhov, Alexandre},
journal = {Bulletin de la Société Mathématique de France},
keywords = {almost complex manifolds; Kobayashi-Royden metric; $J$-holomorphic discs},
language = {eng},
number = {2},
pages = {259-273},
publisher = {Société mathématique de France},
title = {Estimates of the Kobayashi-Royden metric in almost complex manifolds},
url = {http://eudml.org/doc/272419},
volume = {133},
year = {2005},
}

TY - JOUR
AU - Gaussier, Hervé
AU - Sukhov, Alexandre
TI - Estimates of the Kobayashi-Royden metric in almost complex manifolds
JO - Bulletin de la Société Mathématique de France
PY - 2005
PB - Société mathématique de France
VL - 133
IS - 2
SP - 259
EP - 273
AB - We establish a lower estimate for the Kobayashi-Royden infinitesimal pseudometric on an almost complex manifold $(M,J)$ admitting a bounded strictly plurisubharmonic function. We apply this result to study the boundary behaviour of the metric on a strictly pseudoconvex domain in $M$ and to give a sufficient condition for the complete hyperbolicity of a domain in $(M,J)$.
LA - eng
KW - almost complex manifolds; Kobayashi-Royden metric; $J$-holomorphic discs
UR - http://eudml.org/doc/272419
ER -

References

top
  1. [1] F. Berteloot – « Attraction des disques analytiques et continuité höldérienne d’applications holomorphes propres », Topics in complex analysis (Warsaw, 1992), Banach Center Publ., vol. 31, Polish Acad. Sci., Warsaw, 1995, p. 91–98. Zbl0831.32012MR1341379
  2. [2] —, « Principe de Bloch et estimations de la métrique de Kobayashi des domaines de 2 », J. Geom. Anal.13 (2003), p. 29–37. Zbl1040.32011MR1967034
  3. [3] E. Chirka, B. Coupet & A. Sukhov – « On boundary regularity of analytic discs », Michigan Math. J.46 (1999), p. 271–279. Zbl0985.32009MR1704142
  4. [4] R. Debalme – « Kobayashi hyperbolicity of almost complex manifolds », Preprint IRMA, arXiv: math.CV/9805130, 1999. 
  5. [5] R. Debalme & S. Ivashkovich – « Complete hyperbolic neighborhoods in almost-complex surfaces », Internat. J. Math.12 (2001), p. 211–221. Zbl1110.32306MR1823575
  6. [6] K. Diederich & J. Fornæss – « Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary », Ann. of Math. (2) 110 (1979), p. 575–592. Zbl0394.32012MR554386
  7. [7] I. Graham – « Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in n with smooth boundary », Trans. Amer. Math. Soc.207 (1975), p. 219–240. Zbl0305.32011MR372252
  8. [8] F. Haggui – « Fonctions FSH sur une variété presque complexe », C.R. Math. Acad. Sci. Paris335 (2002), p. 509–514. Zbl1013.32019MR1936821
  9. [9] S. Ivashkovich & J.-P. Rosay – « Schwarz-type lemmas for solutions of ¯ -inequalities and complete hyperbolicity of almost complex manifolds », arXiv: math.CV/0310474, 2003. Zbl1072.32007MR2139698
  10. [10] N. Kerzman & J.-P. Rosay – « Fonctions plurisousharmoniques d’exhaustion bornées et domaines taut », Math. Ann.257 (1981), p. 171–184. Zbl0451.32012MR634460
  11. [11] S. Kobayashi – « Almost complex manifolds and hyperbolicity », Results Math. 40 (2001), p. 246–256, Dedicated to Shiing-Shen Chern on his 90th birthday. Zbl1004.53052MR1860372
  12. [12] B. Kruglikov – « Existence of close pseudoholomorphic disks for almost complex manifolds and their application to the Kobayashi-Royden pseudonorm », Funktsional. Anal. i Prilozhen. 33 (1999), p. 46–58, 96. Zbl0967.32024MR1711878
  13. [13] A. Nijenhuis & W. Woolf – « Some integration problems in almost-complex and complex manifolds », Ann. of Math. (2) 77 (1963), p. 424–489. Zbl0115.16103MR149505
  14. [14] S. Pinchuk – « The scaling method and holomorphic mappings », Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, p. 151–161. Zbl0744.32013MR1128522
  15. [15] N. Sibony – « A class of hyperbolic manifolds », Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N.J., 1979), Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, p. 357–372. Zbl0476.32033MR627768
  16. [16] J.-C. Sikorav – « Some properties of holomorphic curves in almost complex manifolds », Holomorphic curves in symplectic geometry, Progr. Math., vol. 117, Birkhäuser, Basel, 1994, p. 165–189. MR1274929

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.