# On the automorphism group of strongly pseudoconvex domains in almost complex manifolds

Jisoo Byun^{[1]}; Hervé Gaussier^{[2]}; Kang-Hyurk Lee^{[3]}

- [1] Department of Mathematics POSTECH Pohang, 790-784 (Korea)
- [2] CMI 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France)
- [3] School of Mathematics KIAS, Hoegiro 87 Dongdaemun-gu Seoul, 130-722 (Korea)

Annales de l’institut Fourier (2009)

- Volume: 59, Issue: 1, page 291-310
- ISSN: 0373-0956

## Access Full Article

top## Abstract

top## How to cite

topByun, Jisoo, Gaussier, Hervé, and Lee, Kang-Hyurk. "On the automorphism group of strongly pseudoconvex domains in almost complex manifolds." Annales de l’institut Fourier 59.1 (2009): 291-310. <http://eudml.org/doc/10393>.

@article{Byun2009,

abstract = {In contrast with the integrable case there exist infinitely many non-integrable homogeneous almost complex manifolds which are strongly pseudoconvex at each boundary point. All such manifolds are equivalent to the Siegel half space endowed with some linear almost complex structure.We prove that there is no relatively compact strongly pseudoconvex representation of these manifolds. Finally we study the upper semi-continuity of the automorphism group of some hyperbolic strongly pseudoconvex almost complex manifolds under deformation of the structure.},

affiliation = {Department of Mathematics POSTECH Pohang, 790-784 (Korea); CMI 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France); School of Mathematics KIAS, Hoegiro 87 Dongdaemun-gu Seoul, 130-722 (Korea)},

author = {Byun, Jisoo, Gaussier, Hervé, Lee, Kang-Hyurk},

journal = {Annales de l’institut Fourier},

keywords = {Automorphism groups; strongly pseudoconvex domains; almost complex manifolds; non-integrable deformations; automorphism groups},

language = {eng},

number = {1},

pages = {291-310},

publisher = {Association des Annales de l’institut Fourier},

title = {On the automorphism group of strongly pseudoconvex domains in almost complex manifolds},

url = {http://eudml.org/doc/10393},

volume = {59},

year = {2009},

}

TY - JOUR

AU - Byun, Jisoo

AU - Gaussier, Hervé

AU - Lee, Kang-Hyurk

TI - On the automorphism group of strongly pseudoconvex domains in almost complex manifolds

JO - Annales de l’institut Fourier

PY - 2009

PB - Association des Annales de l’institut Fourier

VL - 59

IS - 1

SP - 291

EP - 310

AB - In contrast with the integrable case there exist infinitely many non-integrable homogeneous almost complex manifolds which are strongly pseudoconvex at each boundary point. All such manifolds are equivalent to the Siegel half space endowed with some linear almost complex structure.We prove that there is no relatively compact strongly pseudoconvex representation of these manifolds. Finally we study the upper semi-continuity of the automorphism group of some hyperbolic strongly pseudoconvex almost complex manifolds under deformation of the structure.

LA - eng

KW - Automorphism groups; strongly pseudoconvex domains; almost complex manifolds; non-integrable deformations; automorphism groups

UR - http://eudml.org/doc/10393

ER -

## References

top- E. Bedford, S. I. Pinchuk, Domains in ${\mathbf{C}}^{2}$ with noncompact groups of holomorphic automorphisms, Mat. Sb. (N.S.) 135(177) (1988), 147-157, 271 Zbl0643.32011MR937803
- Robert Brody, Compact manifolds in hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213-219 Zbl0416.32013MR470252
- Buma L. Fridman, Daowei Ma, Perturbation of domains and automorphism groups, J. Korean Math. Soc. 40 (2003), 487-501 Zbl1039.32031MR1973914
- Buma L. Fridman, Daowei Ma, Evgeny A. Poletsky, Upper semicontinuity of the dimensions of automorphism groups of domains in ${\u2102}^{N}$, Amer. J. Math. 125 (2003), 289-299 Zbl1031.32019MR1963686
- Hervé Gaussier, Kang-Tae Kim, Compactness of certain families of pseudo-holomorphic mappings into ${\u2102}^{n}$, Internat. J. Math. 15 (2004), 1-12 Zbl1058.32020MR2039209
- Hervé Gaussier, Kang-Tae Kim, Steven G. Krantz, A note on the Wong-Rosay theorem in complex manifolds, Complex Var. Theory Appl. 47 (2002), 761-768 Zbl1044.32019MR1925173
- Hervé Gaussier, Alexandre Sukhov, Estimates of the Kobayashi-Royden metric in almost complex manifolds, Bull. Soc. Math. France 133 (2005), 259-273 Zbl1083.32011MR2172267
- Hervé Gaussier, Alexandre Sukhov, On the geometry of model almost complex manifolds with boundary, Math. Z. 254 (2006), 567-589 Zbl1107.32009MR2244367
- Robert E. Greene, Steven G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), 425-446 Zbl0531.32016MR682655
- Robert E. Greene, Steven G. Krantz, Normal families and the semicontinuity of isometry and automorphism groups, Math. Z. 190 (1985), 455-467 Zbl0584.58014MR808913
- M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347 Zbl0592.53025MR809718
- Richard S. Hamilton, Deformation of complex structures on manifolds with boundary. I. The stable case, J. Differential Geometry 12 (1977), 1-45 Zbl0394.32010MR477158
- Sergey Ivashkovich, Sergey Pinchuk, Jean-Pierre Rosay, Upper semi-continuity of the Kobayashi-Royden pseudo-norm, a counterexample for Hölderian almost complex structures, Ark. Mat. 43 (2005), 395-401 Zbl1091.32009MR2173959
- Sergey Ivashkovich, Jean-Pierre Rosay, Schwarz-type lemmas for solutions of $\overline{\partial}$-inequalities and complete hyperbolicity of almost complex manifolds, Ann. Inst. Fourier (Grenoble) 54 (2004), 2387-2435 (2005) Zbl1072.32007MR2139698
- Shoshichi Kobayashi, Problems related to hyperbolicity of almost complex structures, Complex analysis in several variables—Memorial Conference of Kiyoshi Oka’s Centennial Birthday 42 (2004), 141-146, Math. Soc. Japan, Tokyo Zbl1079.32014MR2087047
- Boris Kruglikov, Deformation of big pseudoholomorphic disks and application to the Hanh pseudonorm, C. R. Math. Acad. Sci. Paris 338 (2004), 295-299 Zbl1041.32015MR2076499
- Boris S. Kruglikov, Marius Overholt, Pseudoholomorphic mappings and Kobayashi hyperbolicity, Differential Geom. Appl. 11 (1999), 265-277 Zbl0954.32019MR1726542
- E. Landau, Collected works Zbl0653.01019
- Kang-Hyurk Lee, Domains in almost complex manifolds with an automorphism orbit accumulating at a strongly pseudoconvex boundary point, Michigan Math. J. 54 (2006), 179-205 Zbl1145.32014MR2214793
- Kang-Hyurk Lee, Strongly pseudoconvex homogeneous domains in almost complex manifolds, J. Reine Angew. Math. 623 (2008), 123-160 Zbl1160.32024MR2458042
- A. J. Lohwater, Ch. Pommerenke, On normal meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A I (1973) Zbl0275.30027MR338381
- Albert Nijenhuis, William B. Woolf, Some integration problems in almost-complex and complex manifolds, Ann. of Math. (2) 77 (1963), 424-489 Zbl0115.16103MR149505
- Sergey Pinchuk, The scaling method and holomorphic mappings, Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989) 52 (1991), 151-161, Amer. Math. Soc., Providence, RI Zbl0744.32013MR1128522
- Jean-Pierre Rosay, Sur une caractérisation de la boule parmi les domaines de ${\mathbf{C}}^{n}$ par son groupe d’automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), ix, 91-97 Zbl0402.32001MR558590
- H. L. Royden, Remarks on the Kobayashi metric, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) (1971), 125-137. Lecture Notes in Math., Vol. 185, Springer, Berlin Zbl0218.32012MR304694
- Jean-Claude Sikorav, Some properties of holomorphic curves in almost complex manifolds, Holomorphic curves in symplectic geometry 117 (1994), 165-189, Birkhäuser, Basel MR1274929
- B. Wong, Characterization of the unit ball in ${\mathbf{C}}^{n}$ by its automorphism group, Invent. Math. 41 (1977), 253-257 Zbl0385.32016MR492401
- Lawrence Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), 813-817 Zbl0315.30036MR379852

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.