On the automorphism group of strongly pseudoconvex domains in almost complex manifolds
Jisoo Byun[1]; Hervé Gaussier[2]; Kang-Hyurk Lee[3]
- [1] Department of Mathematics POSTECH Pohang, 790-784 (Korea)
- [2] CMI 39 rue Joliot-Curie 13453 Marseille Cedex 13 (France)
- [3] School of Mathematics KIAS, Hoegiro 87 Dongdaemun-gu Seoul, 130-722 (Korea)
Annales de l’institut Fourier (2009)
- Volume: 59, Issue: 1, page 291-310
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- E. Bedford, S. I. Pinchuk, Domains in with noncompact groups of holomorphic automorphisms, Mat. Sb. (N.S.) 135(177) (1988), 147-157, 271 Zbl0643.32011MR937803
- Robert Brody, Compact manifolds in hyperbolicity, Trans. Amer. Math. Soc. 235 (1978), 213-219 Zbl0416.32013MR470252
- Buma L. Fridman, Daowei Ma, Perturbation of domains and automorphism groups, J. Korean Math. Soc. 40 (2003), 487-501 Zbl1039.32031MR1973914
- Buma L. Fridman, Daowei Ma, Evgeny A. Poletsky, Upper semicontinuity of the dimensions of automorphism groups of domains in , Amer. J. Math. 125 (2003), 289-299 Zbl1031.32019MR1963686
- Hervé Gaussier, Kang-Tae Kim, Compactness of certain families of pseudo-holomorphic mappings into , Internat. J. Math. 15 (2004), 1-12 Zbl1058.32020MR2039209
- Hervé Gaussier, Kang-Tae Kim, Steven G. Krantz, A note on the Wong-Rosay theorem in complex manifolds, Complex Var. Theory Appl. 47 (2002), 761-768 Zbl1044.32019MR1925173
- Hervé Gaussier, Alexandre Sukhov, Estimates of the Kobayashi-Royden metric in almost complex manifolds, Bull. Soc. Math. France 133 (2005), 259-273 Zbl1083.32011MR2172267
- Hervé Gaussier, Alexandre Sukhov, On the geometry of model almost complex manifolds with boundary, Math. Z. 254 (2006), 567-589 Zbl1107.32009MR2244367
- Robert E. Greene, Steven G. Krantz, The automorphism groups of strongly pseudoconvex domains, Math. Ann. 261 (1982), 425-446 Zbl0531.32016MR682655
- Robert E. Greene, Steven G. Krantz, Normal families and the semicontinuity of isometry and automorphism groups, Math. Z. 190 (1985), 455-467 Zbl0584.58014MR808913
- M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347 Zbl0592.53025MR809718
- Richard S. Hamilton, Deformation of complex structures on manifolds with boundary. I. The stable case, J. Differential Geometry 12 (1977), 1-45 Zbl0394.32010MR477158
- Sergey Ivashkovich, Sergey Pinchuk, Jean-Pierre Rosay, Upper semi-continuity of the Kobayashi-Royden pseudo-norm, a counterexample for Hölderian almost complex structures, Ark. Mat. 43 (2005), 395-401 Zbl1091.32009MR2173959
- Sergey Ivashkovich, Jean-Pierre Rosay, Schwarz-type lemmas for solutions of -inequalities and complete hyperbolicity of almost complex manifolds, Ann. Inst. Fourier (Grenoble) 54 (2004), 2387-2435 (2005) Zbl1072.32007MR2139698
- Shoshichi Kobayashi, Problems related to hyperbolicity of almost complex structures, Complex analysis in several variables—Memorial Conference of Kiyoshi Oka’s Centennial Birthday 42 (2004), 141-146, Math. Soc. Japan, Tokyo Zbl1079.32014MR2087047
- Boris Kruglikov, Deformation of big pseudoholomorphic disks and application to the Hanh pseudonorm, C. R. Math. Acad. Sci. Paris 338 (2004), 295-299 Zbl1041.32015MR2076499
- Boris S. Kruglikov, Marius Overholt, Pseudoholomorphic mappings and Kobayashi hyperbolicity, Differential Geom. Appl. 11 (1999), 265-277 Zbl0954.32019MR1726542
- E. Landau, Collected works Zbl0653.01019
- Kang-Hyurk Lee, Domains in almost complex manifolds with an automorphism orbit accumulating at a strongly pseudoconvex boundary point, Michigan Math. J. 54 (2006), 179-205 Zbl1145.32014MR2214793
- Kang-Hyurk Lee, Strongly pseudoconvex homogeneous domains in almost complex manifolds, J. Reine Angew. Math. 623 (2008), 123-160 Zbl1160.32024MR2458042
- A. J. Lohwater, Ch. Pommerenke, On normal meromorphic functions, Ann. Acad. Sci. Fenn. Ser. A I (1973) Zbl0275.30027MR338381
- Albert Nijenhuis, William B. Woolf, Some integration problems in almost-complex and complex manifolds, Ann. of Math. (2) 77 (1963), 424-489 Zbl0115.16103MR149505
- Sergey Pinchuk, The scaling method and holomorphic mappings, Several complex variables and complex geometry, Part 1 (Santa Cruz, CA, 1989) 52 (1991), 151-161, Amer. Math. Soc., Providence, RI Zbl0744.32013MR1128522
- Jean-Pierre Rosay, Sur une caractérisation de la boule parmi les domaines de par son groupe d’automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), ix, 91-97 Zbl0402.32001MR558590
- H. L. Royden, Remarks on the Kobayashi metric, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) (1971), 125-137. Lecture Notes in Math., Vol. 185, Springer, Berlin Zbl0218.32012MR304694
- Jean-Claude Sikorav, Some properties of holomorphic curves in almost complex manifolds, Holomorphic curves in symplectic geometry 117 (1994), 165-189, Birkhäuser, Basel MR1274929
- B. Wong, Characterization of the unit ball in by its automorphism group, Invent. Math. 41 (1977), 253-257 Zbl0385.32016MR492401
- Lawrence Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), 813-817 Zbl0315.30036MR379852