Properties of Wiener-Wintner dynamical systems

I. Assani; K. Nicolaou

Bulletin de la Société Mathématique de France (2001)

  • Volume: 129, Issue: 3, page 361-377
  • ISSN: 0037-9484

Abstract

top
In this paper we prove the following results. First, we show the existence of Wiener-Wintner dynamical system with continuous singular spectrum in the orthocomplement of their respective Kronecker factors. The second result states that if f L p , p large enough, is a Wiener-Wintner function then, for all γ ( 1 + 1 2 p - β 2 , 1 ] , there exists a set X f of full measure for which the series n = 1 f ( T n x ) e 2 π i n ϵ n γ converges uniformly with respect to ϵ .

How to cite

top

Assani, I., and Nicolaou, K.. "Properties of Wiener-Wintner dynamical systems." Bulletin de la Société Mathématique de France 129.3 (2001): 361-377. <http://eudml.org/doc/272434>.

@article{Assani2001,
abstract = {In this paper we prove the following results. First, we show the existence of Wiener-Wintner dynamical system with continuous singular spectrum in the orthocomplement of their respective Kronecker factors. The second result states that if $f\in L^p$, $p$ large enough, is a Wiener-Wintner function then, for all $\gamma \in (1+\frac\{1\}\{2p\}-\frac\{\beta \}\{2\},1]$, there exists a set $X_f$ of full measure for which the series $\sum _\{n=1\}^\{\infty \} \frac\{f(T^n x)e^\{2\pi i n \epsilon \}\}\{n^\{\gamma \}\} $ converges uniformly with respect to $\epsilon $.},
author = {Assani, I., Nicolaou, K.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Wiener Wintner dynamical systems; Wiener Wintner functions; Kronecker factor},
language = {eng},
number = {3},
pages = {361-377},
publisher = {Société mathématique de France},
title = {Properties of Wiener-Wintner dynamical systems},
url = {http://eudml.org/doc/272434},
volume = {129},
year = {2001},
}

TY - JOUR
AU - Assani, I.
AU - Nicolaou, K.
TI - Properties of Wiener-Wintner dynamical systems
JO - Bulletin de la Société Mathématique de France
PY - 2001
PB - Société mathématique de France
VL - 129
IS - 3
SP - 361
EP - 377
AB - In this paper we prove the following results. First, we show the existence of Wiener-Wintner dynamical system with continuous singular spectrum in the orthocomplement of their respective Kronecker factors. The second result states that if $f\in L^p$, $p$ large enough, is a Wiener-Wintner function then, for all $\gamma \in (1+\frac{1}{2p}-\frac{\beta }{2},1]$, there exists a set $X_f$ of full measure for which the series $\sum _{n=1}^{\infty } \frac{f(T^n x)e^{2\pi i n \epsilon }}{n^{\gamma }} $ converges uniformly with respect to $\epsilon $.
LA - eng
KW - Wiener Wintner dynamical systems; Wiener Wintner functions; Kronecker factor
UR - http://eudml.org/doc/272434
ER -

References

top
  1. [1] I. Assani – « Wiener-wintner dynamical systems », Preprint, 1998. Zbl1128.37300MR2032481
  2. [2] —, « Spectral characterization of Wiener-Wintner dynamical systems », Prépublication IRMA Strasbourg, June 2000. 
  3. [3] J. Bourgain – « Double recurrence and almost sure convergence », 404 (1990), p. 140–161. Zbl0685.28008MR1037434
  4. [4] H. Furstenberg – Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, NJ, 1981. Zbl0459.28023MR603625
  5. [5] A. Iwanik, M. Lemanczyk & C. Mauduit – « Spectral properties of piecewise absolutely continuous cocycles over irrational rotations », 59 (1996), p. 171–187. Zbl0931.28015MR1688497
  6. [6] A. Khinchin – « Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen », 92 (1924), p. 115–125. MR1512207JFM50.0125.01
  7. [7] —, Continued fractions, The University of Chicago press, Chicago, Illinois, 1964. Zbl0117.28601MR161833
  8. [8] L. Kuipers & H. Niederreiter – Uniform distribution of sequences, John Wiley and Sons, 1974. Zbl0281.10001MR419394
  9. [9] H. Medina – « Spectral Types of Unitary Operators Arising from Irrational Rotations on the Circle Group », 41 (1994), p. 39–49. Zbl0999.47024MR1260607
  10. [10] M. Schwartz – « Polynomially moving ergodic averages », 103 (1988), no. 1, p. 252–254. Zbl0642.28008MR938678

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.