Batalin-Vilkovisky algebra structures on Hochschild cohomology

Luc Menichi

Bulletin de la Société Mathématique de France (2009)

  • Volume: 137, Issue: 2, page 277-295
  • ISSN: 0037-9484

Abstract

top
Let M be any compact simply-connected oriented d -dimensional smooth manifold and let 𝔽 be any field. We show that the Gerstenhaber algebra structure on the Hochschild cohomology on the singular cochains of M , H H * ( S * ( M ) , S * ( M ) ) , extends to a Batalin-Vilkovisky algebra. Such Batalin-Vilkovisky algebra was conjectured to exist and is expected to be isomorphic to the Batalin-Vilkovisky algebra on the free loop space homology on M , H * + d ( L M ) introduced by Chas and Sullivan. We also show that the negative cyclic cohomology H C - * ( S * ( M ) ) has a Lie bracket. Such Lie bracket is expected to coincide with the Chas-Sullivan string bracket on the equivariant homology H * S 1 ( L M ) .

How to cite

top

Menichi, Luc. "Batalin-Vilkovisky algebra structures on Hochschild cohomology." Bulletin de la Société Mathématique de France 137.2 (2009): 277-295. <http://eudml.org/doc/272441>.

@article{Menichi2009,
abstract = {Let $M$ be any compact simply-connected oriented $d$-dimensional smooth manifold and let $\mathbb \{F\}$ be any field. We show that the Gerstenhaber algebra structure on the Hochschild cohomology on the singular cochains of $M$, $HH^*(S^*(M),S^*(M))$, extends to a Batalin-Vilkovisky algebra. Such Batalin-Vilkovisky algebra was conjectured to exist and is expected to be isomorphic to the Batalin-Vilkovisky algebra on the free loop space homology on $M$, $H_\{*+d\}(LM)$ introduced by Chas and Sullivan. We also show that the negative cyclic cohomology $HC^*_-(S^*(M))$ has a Lie bracket. Such Lie bracket is expected to coincide with the Chas-Sullivan string bracket on the equivariant homology $H_*^\{S^1\}(LM)$.},
author = {Menichi, Luc},
journal = {Bulletin de la Société Mathématique de France},
keywords = {string topology; Batalin-Vilkovisky algebra; Gerstenhaber algebra; Hochschild cohomology; free loop space},
language = {eng},
number = {2},
pages = {277-295},
publisher = {Société mathématique de France},
title = {Batalin-Vilkovisky algebra structures on Hochschild cohomology},
url = {http://eudml.org/doc/272441},
volume = {137},
year = {2009},
}

TY - JOUR
AU - Menichi, Luc
TI - Batalin-Vilkovisky algebra structures on Hochschild cohomology
JO - Bulletin de la Société Mathématique de France
PY - 2009
PB - Société mathématique de France
VL - 137
IS - 2
SP - 277
EP - 295
AB - Let $M$ be any compact simply-connected oriented $d$-dimensional smooth manifold and let $\mathbb {F}$ be any field. We show that the Gerstenhaber algebra structure on the Hochschild cohomology on the singular cochains of $M$, $HH^*(S^*(M),S^*(M))$, extends to a Batalin-Vilkovisky algebra. Such Batalin-Vilkovisky algebra was conjectured to exist and is expected to be isomorphic to the Batalin-Vilkovisky algebra on the free loop space homology on $M$, $H_{*+d}(LM)$ introduced by Chas and Sullivan. We also show that the negative cyclic cohomology $HC^*_-(S^*(M))$ has a Lie bracket. Such Lie bracket is expected to coincide with the Chas-Sullivan string bracket on the equivariant homology $H_*^{S^1}(LM)$.
LA - eng
KW - string topology; Batalin-Vilkovisky algebra; Gerstenhaber algebra; Hochschild cohomology; free loop space
UR - http://eudml.org/doc/272441
ER -

References

top
  1. [1] M. Chas & D. Sullivan – « String topology », preprint arXiv:math/9911159, 1999. 
  2. [2] D. Chataur & L. Menichi – « String topology of classifying spaces », preprint arXiv:math.AT/0801.0174, 2008. Zbl1253.55008MR2980450
  3. [3] X. Chen – « On a general chain model of the free loop space and string topology », preprint arXiv:0708.1197, 2007. MR2712184
  4. [4] R. L. Cohen & J. D. S. Jones – « A homotopic theoretic realization of string topology », Math. Ann.324 (2002), p. 773–798. Zbl1025.55005MR1942249
  5. [5] K. Costello – « Topological conformal field theories and Calabi-Yau categories », Adv. Math.210 (2007), p. 165–214. Zbl1171.14038MR2298823
  6. [6] J. Cuntz, G. Skandalis & B. Tsygan – Cyclic homology in non-commutative geometry, Encyclopaedia of Mathematical Sciences, vol. 121, Springer, 2004. Zbl1045.46043MR2052770
  7. [7] C. Curtis & I. Reiner – Methods of representation theory, vol. 1, J. Wiley and Sons, New York, 1981. Zbl0616.20001MR632548
  8. [8] C.-H. Eu & T. Schedler – « Calabi-Yau Frobenius algebras », preprint arXiv:0710.3391, 2007. Zbl1230.16009MR2488552
  9. [9] Y. Félix, S. Halperin & J.-C. Thomas – « Gorenstein spaces », Adv. in Math.71 (1988), p. 92–112. Zbl0659.57011MR960364
  10. [10] —, Rational homotopy theory, Graduate Texts in Math., vol. 205, Springer, 2000. 
  11. [11] Y. Félix, L. Menichi & J.-C. Thomas – « Gerstenhaber duality in Hochschild cohomology », J. Pure Appl. Algebra199 (2005), p. 43–59. Zbl1076.55003MR2134291
  12. [12] Y. Félix & J.-C. Thomas – « Rational BV-algebra in string topology », preprint arXiv:0705.4194, 2007. Zbl1160.55006
  13. [13] Y. Félix, J.-C. Thomas & M. Vigué-Poirrier – « The Hochschild cohomology of a closed manifold », Publ. Math. Inst. Hautes Études Sci.99 (2004), p. 235–252. Zbl1060.57019MR2075886
  14. [14] —, « Rational string topology », J. Eur. Math. Soc. (JEMS) 9 (2007), p. 123–156. Zbl1200.55015MR2283106
  15. [15] I. M. Gelʼfand, Y. L. Daletskiĭ & B. Tsygan – « On a variant of noncommutative differential geometry », Dokl. Akad. Nauk SSSR308 (1989), p. 1293–1297. Zbl0712.17026MR1039918
  16. [16] M. Gerstenhaber – « The cohomology structure of an associative ring », Ann. of Math.78 (1963), p. 267–288. Zbl0131.27302MR161898
  17. [17] V. Ginzburg – « Calabi-yau algebras », preprint arXiv:math/0612139v3, 2006. 
  18. [18] P. Hu – « The Hochschild cohomology of a Poincaré algebra », preprint arXiv:0707.4118, 2007. 
  19. [19] J. D. S. Jones – « Cyclic homology and equivariant homology », Invent. Math.87 (1987), p. 403–423. Zbl0644.55005MR870737
  20. [20] R. M. Kaufmann – « A proof of a cyclic version of Deligne’s conjecture via Cacti », preprint arXiv:math.QA/0403340, 2004. Zbl1161.55001MR2443991
  21. [21] —, « Moduli space actions on the Hochschild co-chains of a Frobenius algebra. I. Cell operads », J. Noncommut. Geom.1 (2007), p. 333–384. Zbl1145.55008MR2314100
  22. [22] M. Kontsevich & Y. Soibelman – « Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I », preprint arXiv:math.RA/0606241, 2006. 
  23. [23] L. Menichi – « Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras », K -Theory 32 (2004), p. 231–251. Zbl1101.19003MR2114167
  24. [24] —, « String topology for spheres », to appear in Comment. Math. Helv.. Zbl1159.55004MR2466078
  25. [25] S. Merkulov – « De Rham model for string topology », Int. Math. Res. Not.55 (2004), p. 2955–2981. Zbl1066.55008MR2099178
  26. [26] T. Tradler – « The BV algebra on Hochschild cohomology induced by infinity inner products », preprint arXiv:math.QA/0210150, 2002. 
  27. [27] T. Tradler & M. Zeinalian – « Algebraic string operations », preprint arXiv:math/0605770, 2006. Zbl1144.55012MR2353864
  28. [28] —, « On the cyclic Deligne conjecture », J. Pure Appl. Algebra204 (2006), p. 280–299. Zbl1147.16012MR2184812
  29. [29] —, « Infinity structure of Poincaré duality spaces », Algebr. Geom. Topol.7 (2007), p. 233–260. Zbl1137.57025MR2308943

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.