Batalin-Vilkovisky algebra structures on Hochschild cohomology
Bulletin de la Société Mathématique de France (2009)
- Volume: 137, Issue: 2, page 277-295
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topMenichi, Luc. "Batalin-Vilkovisky algebra structures on Hochschild cohomology." Bulletin de la Société Mathématique de France 137.2 (2009): 277-295. <http://eudml.org/doc/272441>.
@article{Menichi2009,
abstract = {Let $M$ be any compact simply-connected oriented $d$-dimensional smooth manifold and let $\mathbb \{F\}$ be any field. We show that the Gerstenhaber algebra structure on the Hochschild cohomology on the singular cochains of $M$, $HH^*(S^*(M),S^*(M))$, extends to a Batalin-Vilkovisky algebra. Such Batalin-Vilkovisky algebra was conjectured to exist and is expected to be isomorphic to the Batalin-Vilkovisky algebra on the free loop space homology on $M$, $H_\{*+d\}(LM)$ introduced by Chas and Sullivan. We also show that the negative cyclic cohomology $HC^*_-(S^*(M))$ has a Lie bracket. Such Lie bracket is expected to coincide with the Chas-Sullivan string bracket on the equivariant homology $H_*^\{S^1\}(LM)$.},
author = {Menichi, Luc},
journal = {Bulletin de la Société Mathématique de France},
keywords = {string topology; Batalin-Vilkovisky algebra; Gerstenhaber algebra; Hochschild cohomology; free loop space},
language = {eng},
number = {2},
pages = {277-295},
publisher = {Société mathématique de France},
title = {Batalin-Vilkovisky algebra structures on Hochschild cohomology},
url = {http://eudml.org/doc/272441},
volume = {137},
year = {2009},
}
TY - JOUR
AU - Menichi, Luc
TI - Batalin-Vilkovisky algebra structures on Hochschild cohomology
JO - Bulletin de la Société Mathématique de France
PY - 2009
PB - Société mathématique de France
VL - 137
IS - 2
SP - 277
EP - 295
AB - Let $M$ be any compact simply-connected oriented $d$-dimensional smooth manifold and let $\mathbb {F}$ be any field. We show that the Gerstenhaber algebra structure on the Hochschild cohomology on the singular cochains of $M$, $HH^*(S^*(M),S^*(M))$, extends to a Batalin-Vilkovisky algebra. Such Batalin-Vilkovisky algebra was conjectured to exist and is expected to be isomorphic to the Batalin-Vilkovisky algebra on the free loop space homology on $M$, $H_{*+d}(LM)$ introduced by Chas and Sullivan. We also show that the negative cyclic cohomology $HC^*_-(S^*(M))$ has a Lie bracket. Such Lie bracket is expected to coincide with the Chas-Sullivan string bracket on the equivariant homology $H_*^{S^1}(LM)$.
LA - eng
KW - string topology; Batalin-Vilkovisky algebra; Gerstenhaber algebra; Hochschild cohomology; free loop space
UR - http://eudml.org/doc/272441
ER -
References
top- [1] M. Chas & D. Sullivan – « String topology », preprint arXiv:math/9911159, 1999.
- [2] D. Chataur & L. Menichi – « String topology of classifying spaces », preprint arXiv:math.AT/0801.0174, 2008. Zbl1253.55008MR2980450
- [3] X. Chen – « On a general chain model of the free loop space and string topology », preprint arXiv:0708.1197, 2007. MR2712184
- [4] R. L. Cohen & J. D. S. Jones – « A homotopic theoretic realization of string topology », Math. Ann.324 (2002), p. 773–798. Zbl1025.55005MR1942249
- [5] K. Costello – « Topological conformal field theories and Calabi-Yau categories », Adv. Math.210 (2007), p. 165–214. Zbl1171.14038MR2298823
- [6] J. Cuntz, G. Skandalis & B. Tsygan – Cyclic homology in non-commutative geometry, Encyclopaedia of Mathematical Sciences, vol. 121, Springer, 2004. Zbl1045.46043MR2052770
- [7] C. Curtis & I. Reiner – Methods of representation theory, vol. 1, J. Wiley and Sons, New York, 1981. Zbl0616.20001MR632548
- [8] C.-H. Eu & T. Schedler – « Calabi-Yau Frobenius algebras », preprint arXiv:0710.3391, 2007. Zbl1230.16009MR2488552
- [9] Y. Félix, S. Halperin & J.-C. Thomas – « Gorenstein spaces », Adv. in Math.71 (1988), p. 92–112. Zbl0659.57011MR960364
- [10] —, Rational homotopy theory, Graduate Texts in Math., vol. 205, Springer, 2000.
- [11] Y. Félix, L. Menichi & J.-C. Thomas – « Gerstenhaber duality in Hochschild cohomology », J. Pure Appl. Algebra199 (2005), p. 43–59. Zbl1076.55003MR2134291
- [12] Y. Félix & J.-C. Thomas – « Rational BV-algebra in string topology », preprint arXiv:0705.4194, 2007. Zbl1160.55006
- [13] Y. Félix, J.-C. Thomas & M. Vigué-Poirrier – « The Hochschild cohomology of a closed manifold », Publ. Math. Inst. Hautes Études Sci.99 (2004), p. 235–252. Zbl1060.57019MR2075886
- [14] —, « Rational string topology », J. Eur. Math. Soc. (JEMS) 9 (2007), p. 123–156. Zbl1200.55015MR2283106
- [15] I. M. Gelʼfand, Y. L. Daletskiĭ & B. Tsygan – « On a variant of noncommutative differential geometry », Dokl. Akad. Nauk SSSR308 (1989), p. 1293–1297. Zbl0712.17026MR1039918
- [16] M. Gerstenhaber – « The cohomology structure of an associative ring », Ann. of Math.78 (1963), p. 267–288. Zbl0131.27302MR161898
- [17] V. Ginzburg – « Calabi-yau algebras », preprint arXiv:math/0612139v3, 2006.
- [18] P. Hu – « The Hochschild cohomology of a Poincaré algebra », preprint arXiv:0707.4118, 2007.
- [19] J. D. S. Jones – « Cyclic homology and equivariant homology », Invent. Math.87 (1987), p. 403–423. Zbl0644.55005MR870737
- [20] R. M. Kaufmann – « A proof of a cyclic version of Deligne’s conjecture via Cacti », preprint arXiv:math.QA/0403340, 2004. Zbl1161.55001MR2443991
- [21] —, « Moduli space actions on the Hochschild co-chains of a Frobenius algebra. I. Cell operads », J. Noncommut. Geom.1 (2007), p. 333–384. Zbl1145.55008MR2314100
- [22] M. Kontsevich & Y. Soibelman – « Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I », preprint arXiv:math.RA/0606241, 2006.
- [23] L. Menichi – « Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras », -Theory 32 (2004), p. 231–251. Zbl1101.19003MR2114167
- [24] —, « String topology for spheres », to appear in Comment. Math. Helv.. Zbl1159.55004MR2466078
- [25] S. Merkulov – « De Rham model for string topology », Int. Math. Res. Not.55 (2004), p. 2955–2981. Zbl1066.55008MR2099178
- [26] T. Tradler – « The BV algebra on Hochschild cohomology induced by infinity inner products », preprint arXiv:math.QA/0210150, 2002.
- [27] T. Tradler & M. Zeinalian – « Algebraic string operations », preprint arXiv:math/0605770, 2006. Zbl1144.55012MR2353864
- [28] —, « On the cyclic Deligne conjecture », J. Pure Appl. Algebra204 (2006), p. 280–299. Zbl1147.16012MR2184812
- [29] —, « Infinity structure of Poincaré duality spaces », Algebr. Geom. Topol.7 (2007), p. 233–260. Zbl1137.57025MR2308943
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.