On the loop homology of complex projective spaces

David Chataur; Jean-François Le Borgne

Bulletin de la Société Mathématique de France (2011)

  • Volume: 139, Issue: 4, page 503-518
  • ISSN: 0037-9484

Abstract

top
In this short note we compute the Chas-Sullivan BV-algebra structure on the singular homology of the free loop space of complex projective spaces. We compare this result with computations in Hochschild cohomology.

How to cite

top

Chataur, David, and Le Borgne, Jean-François. "On the loop homology of complex projective spaces." Bulletin de la Société Mathématique de France 139.4 (2011): 503-518. <http://eudml.org/doc/272667>.

@article{Chataur2011,
abstract = {In this short note we compute the Chas-Sullivan BV-algebra structure on the singular homology of the free loop space of complex projective spaces. We compare this result with computations in Hochschild cohomology.},
author = {Chataur, David, Le Borgne, Jean-François},
journal = {Bulletin de la Société Mathématique de France},
keywords = {free loop spaces; Hochschild homology; string topology},
language = {eng},
number = {4},
pages = {503-518},
publisher = {Société mathématique de France},
title = {On the loop homology of complex projective spaces},
url = {http://eudml.org/doc/272667},
volume = {139},
year = {2011},
}

TY - JOUR
AU - Chataur, David
AU - Le Borgne, Jean-François
TI - On the loop homology of complex projective spaces
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 4
SP - 503
EP - 518
AB - In this short note we compute the Chas-Sullivan BV-algebra structure on the singular homology of the free loop space of complex projective spaces. We compare this result with computations in Hochschild cohomology.
LA - eng
KW - free loop spaces; Hochschild homology; string topology
UR - http://eudml.org/doc/272667
ER -

References

top
  1. [1] R. Bott – « Lectures on Morse theory, old and new », Bull. Amer. Math. Soc. (N.S.) 7 (1982), p. 331–358. Zbl0505.58001MR663786
  2. [2] M. Cadek & Z. Moravek – « Loop homology of quaternionic projective spaces », preprint arXiv:math.AT/10041550. 
  3. [3] M. Chas & D. Sullivan – « String topology », preprint arXiv:math.GT/9911159. 
  4. [4] R. L. Cohen & J. D. S. Jones – « A homotopy theoretic realization of string topology », Math. Ann.324 (2002), p. 773–798. Zbl1025.55005MR1942249
  5. [5] R. L. Cohen, J. D. S. Jones & J. Yan – « The loop homology algebra of spheres and projective spaces », in Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), Progr. Math., vol. 215, Birkhäuser, 2004, p. 77–92. Zbl1054.55006MR2039760
  6. [6] Y. Félix & J.-C. Thomas – « Rational BV-algebra in string topology », Bull. Soc. Math. France136 (2008), p. 311–327. Zbl1160.55006MR2415345
  7. [7] Y. Felix, J.-C. Thomas & M. Vigué-Poirrier – « The Hochschild cohomology of a closed manifold », Publ. Math. Inst. Hautes Études Sci.99 (2004), p. 235–252. Zbl1060.57019MR2075886
  8. [8] M. Gerstenhaber – « The cohomology structure of an associative ring », Ann. of Math.78 (1963), p. 267–288. Zbl0131.27302MR161898
  9. [9] E. Getzler – « Batalin-Vilkovisky algebras and two-dimensional topological field theories », Comm. Math. Phys.159 (1994), p. 265–285. Zbl0807.17026MR1256989
  10. [10] M. Goresky & N. Hingston – « Loop products and closed geodesics », Duke Math. J.150 (2009), p. 117–209. Zbl1181.53036MR2560110
  11. [11] R. Hepworth – « String topology for complex projective spaces », preprint arXiv:math.AT/0908.1013. 
  12. [12] F. Laudenbach – « A note on the Chas-Sullivan loop product », preprint arXiv:math.GT/0903.2801. 
  13. [13] L. Menichi – « Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras », K -Theory 32 (2004), p. 231–251. Zbl1101.19003MR2114167
  14. [14] —, « Batalin-Vilkovisky algebra structures on Hochschild cohomology », Bull. Soc. Math. France137 (2009), p. 277–295. Zbl1180.16007MR2543477
  15. [15] —, « String topology for spheres », Comment. Math. Helv.84 (2009), p. 135–157. Zbl1159.55004MR2466078
  16. [16] I. Ottosen & M. Bökstedt – « String cohomology groups of complex projective spaces », Algebr. Geom. Topol.7 (2007), p. 2165–2238. Zbl1134.55005MR2366191
  17. [17] H. Tamanoi – « Batalin-Vilkovisky Lie algebra structure on the loop homology of complex Stiefel manifolds », Int. Math. Res. Not. 2006 (2006), Art. ID 97193, 23. Zbl1108.55007MR2211159
  18. [18] T. Tradler – « The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products », Ann. Inst. Fourier (Grenoble) 58 (2008), p. 2351–2379. Zbl1218.16004MR2498354
  19. [19] T. Yang – « A Batalin-Vilkovisky algebra structure on the Hochschild cohomology of truncated polynomials », preprint arXiv:0707.4213. Zbl1282.55013MR3091339
  20. [20] W. Ziller – « The free loop space of globally symmetric spaces », Invent. Math.41 (1977), p. 1–22. Zbl0338.58007MR649625

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.