On the loop homology of complex projective spaces
David Chataur; Jean-François Le Borgne
Bulletin de la Société Mathématique de France (2011)
- Volume: 139, Issue: 4, page 503-518
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topChataur, David, and Le Borgne, Jean-François. "On the loop homology of complex projective spaces." Bulletin de la Société Mathématique de France 139.4 (2011): 503-518. <http://eudml.org/doc/272667>.
@article{Chataur2011,
abstract = {In this short note we compute the Chas-Sullivan BV-algebra structure on the singular homology of the free loop space of complex projective spaces. We compare this result with computations in Hochschild cohomology.},
author = {Chataur, David, Le Borgne, Jean-François},
journal = {Bulletin de la Société Mathématique de France},
keywords = {free loop spaces; Hochschild homology; string topology},
language = {eng},
number = {4},
pages = {503-518},
publisher = {Société mathématique de France},
title = {On the loop homology of complex projective spaces},
url = {http://eudml.org/doc/272667},
volume = {139},
year = {2011},
}
TY - JOUR
AU - Chataur, David
AU - Le Borgne, Jean-François
TI - On the loop homology of complex projective spaces
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 4
SP - 503
EP - 518
AB - In this short note we compute the Chas-Sullivan BV-algebra structure on the singular homology of the free loop space of complex projective spaces. We compare this result with computations in Hochschild cohomology.
LA - eng
KW - free loop spaces; Hochschild homology; string topology
UR - http://eudml.org/doc/272667
ER -
References
top- [1] R. Bott – « Lectures on Morse theory, old and new », Bull. Amer. Math. Soc. (N.S.) 7 (1982), p. 331–358. Zbl0505.58001MR663786
- [2] M. Cadek & Z. Moravek – « Loop homology of quaternionic projective spaces », preprint arXiv:math.AT/10041550.
- [3] M. Chas & D. Sullivan – « String topology », preprint arXiv:math.GT/9911159.
- [4] R. L. Cohen & J. D. S. Jones – « A homotopy theoretic realization of string topology », Math. Ann.324 (2002), p. 773–798. Zbl1025.55005MR1942249
- [5] R. L. Cohen, J. D. S. Jones & J. Yan – « The loop homology algebra of spheres and projective spaces », in Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001), Progr. Math., vol. 215, Birkhäuser, 2004, p. 77–92. Zbl1054.55006MR2039760
- [6] Y. Félix & J.-C. Thomas – « Rational BV-algebra in string topology », Bull. Soc. Math. France136 (2008), p. 311–327. Zbl1160.55006MR2415345
- [7] Y. Felix, J.-C. Thomas & M. Vigué-Poirrier – « The Hochschild cohomology of a closed manifold », Publ. Math. Inst. Hautes Études Sci.99 (2004), p. 235–252. Zbl1060.57019MR2075886
- [8] M. Gerstenhaber – « The cohomology structure of an associative ring », Ann. of Math.78 (1963), p. 267–288. Zbl0131.27302MR161898
- [9] E. Getzler – « Batalin-Vilkovisky algebras and two-dimensional topological field theories », Comm. Math. Phys.159 (1994), p. 265–285. Zbl0807.17026MR1256989
- [10] M. Goresky & N. Hingston – « Loop products and closed geodesics », Duke Math. J.150 (2009), p. 117–209. Zbl1181.53036MR2560110
- [11] R. Hepworth – « String topology for complex projective spaces », preprint arXiv:math.AT/0908.1013.
- [12] F. Laudenbach – « A note on the Chas-Sullivan loop product », preprint arXiv:math.GT/0903.2801.
- [13] L. Menichi – « Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras », -Theory 32 (2004), p. 231–251. Zbl1101.19003MR2114167
- [14] —, « Batalin-Vilkovisky algebra structures on Hochschild cohomology », Bull. Soc. Math. France137 (2009), p. 277–295. Zbl1180.16007MR2543477
- [15] —, « String topology for spheres », Comment. Math. Helv.84 (2009), p. 135–157. Zbl1159.55004MR2466078
- [16] I. Ottosen & M. Bökstedt – « String cohomology groups of complex projective spaces », Algebr. Geom. Topol.7 (2007), p. 2165–2238. Zbl1134.55005MR2366191
- [17] H. Tamanoi – « Batalin-Vilkovisky Lie algebra structure on the loop homology of complex Stiefel manifolds », Int. Math. Res. Not. 2006 (2006), Art. ID 97193, 23. Zbl1108.55007MR2211159
- [18] T. Tradler – « The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products », Ann. Inst. Fourier (Grenoble) 58 (2008), p. 2351–2379. Zbl1218.16004MR2498354
- [19] T. Yang – « A Batalin-Vilkovisky algebra structure on the Hochschild cohomology of truncated polynomials », preprint arXiv:0707.4213. Zbl1282.55013MR3091339
- [20] W. Ziller – « The free loop space of globally symmetric spaces », Invent. Math.41 (1977), p. 1–22. Zbl0338.58007MR649625
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.