Symmetries of the nonlinear Schrödinger equation

Benoît Grébert; Thomas Kappeler

Bulletin de la Société Mathématique de France (2002)

  • Volume: 130, Issue: 4, page 603-618
  • ISSN: 0037-9484

Abstract

top
Symmetries of the defocusing nonlinear Schrödinger equation are expressed in action-angle coordinates and characterized in terms of the periodic and Dirichlet spectrum of the associated Zakharov-Shabat system. Application: proof of the conjecture that the periodic spectrum < λ k - λ k + < λ k + 1 - of a Zakharov-Shabat operator is symmetric,i.e. λ k ± = - λ - k for all k , if and only if the sequence ( γ k ) k of gap lengths, γ k : = λ k + - λ k - , is symmetric with respect to k = 0 .

How to cite

top

Grébert, Benoît, and Kappeler, Thomas. "Symmetries of the nonlinear Schrödinger equation." Bulletin de la Société Mathématique de France 130.4 (2002): 603-618. <http://eudml.org/doc/272455>.

@article{Grébert2002,
abstract = {Symmetries of the defocusing nonlinear Schrödinger equation are expressed in action-angle coordinates and characterized in terms of the periodic and Dirichlet spectrum of the associated Zakharov-Shabat system. Application: proof of the conjecture that the periodic spectrum $\cdots &lt; \lambda ^-_k \le \lambda ^+_k &lt; \lambda ^-_\{k + 1\} \le \cdots $ of a Zakharov-Shabat operator is symmetric,i.e. $\lambda ^\pm _k = - \lambda ^\mp _\{-k\}$ for all $k$, if and only if the sequence $(\gamma _k)_\{k\in \mathbb \{Z\}\}$ of gap lengths, $\gamma _k:= \lambda ^+_k - \lambda ^-_k$, is symmetric with respect to $k=0$.},
author = {Grébert, Benoît, Kappeler, Thomas},
journal = {Bulletin de la Société Mathématique de France},
keywords = {NLS equation; Zakharov-Shabat operators; action-angle variables; symmetries},
language = {eng},
number = {4},
pages = {603-618},
publisher = {Société mathématique de France},
title = {Symmetries of the nonlinear Schrödinger equation},
url = {http://eudml.org/doc/272455},
volume = {130},
year = {2002},
}

TY - JOUR
AU - Grébert, Benoît
AU - Kappeler, Thomas
TI - Symmetries of the nonlinear Schrödinger equation
JO - Bulletin de la Société Mathématique de France
PY - 2002
PB - Société mathématique de France
VL - 130
IS - 4
SP - 603
EP - 618
AB - Symmetries of the defocusing nonlinear Schrödinger equation are expressed in action-angle coordinates and characterized in terms of the periodic and Dirichlet spectrum of the associated Zakharov-Shabat system. Application: proof of the conjecture that the periodic spectrum $\cdots &lt; \lambda ^-_k \le \lambda ^+_k &lt; \lambda ^-_{k + 1} \le \cdots $ of a Zakharov-Shabat operator is symmetric,i.e. $\lambda ^\pm _k = - \lambda ^\mp _{-k}$ for all $k$, if and only if the sequence $(\gamma _k)_{k\in \mathbb {Z}}$ of gap lengths, $\gamma _k:= \lambda ^+_k - \lambda ^-_k$, is symmetric with respect to $k=0$.
LA - eng
KW - NLS equation; Zakharov-Shabat operators; action-angle variables; symmetries
UR - http://eudml.org/doc/272455
ER -

References

top
  1. [1] J. Bourgain – « Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations », GAFA3 (1993), p. 107–156. Zbl0787.35097MR1209299
  2. [2] L. Faddeev & L. Takhtajan – Hamiltonian methods in the theory of solitons, Springer, 1987. Zbl1111.37001MR905674
  3. [3] B. Grébert – « Problèmes spectraux inverses pour les systèmes AKNS sur la droite réelle », Thèse, Université Paris-Nord, 1990. 
  4. [4] B. Grébert & J. Guillot – « Gaps of one dimensional periodic AKNS systems », Forum Math5 (1993), p. 459–504. Zbl0784.34024MR1232720
  5. [5] B. Grébert & T. Kappeler – « Perturbations of the NLS equation », to appear in Milan J. of Math. Zbl1048.37067MR2120919
  6. [6] —, « Théorème de type KAM pour l’équation de Schrödinger non linéaire », 327 (1998), p. 473–478. Zbl0913.35125MR1652566
  7. [7] B. Grébert, T. Kappeler & J. Pöschel – « Normal form theory for NLS », preliminary version available (please contact authors). Zbl1298.35002
  8. [8] H. McKean & K. Vaninsky – « Action-angle variables for the cubic Schrödinger equation », CPAM50 (1997), p. 489–562. Zbl0990.35047MR1441912

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.