Symmetries of the nonlinear Schrödinger equation
Benoît Grébert; Thomas Kappeler
Bulletin de la Société Mathématique de France (2002)
- Volume: 130, Issue: 4, page 603-618
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topGrébert, Benoît, and Kappeler, Thomas. "Symmetries of the nonlinear Schrödinger equation." Bulletin de la Société Mathématique de France 130.4 (2002): 603-618. <http://eudml.org/doc/272455>.
@article{Grébert2002,
abstract = {Symmetries of the defocusing nonlinear Schrödinger equation are expressed in action-angle coordinates and characterized in terms of the periodic and Dirichlet spectrum of the associated Zakharov-Shabat system. Application: proof of the conjecture that the periodic spectrum $\cdots < \lambda ^-_k \le \lambda ^+_k < \lambda ^-_\{k + 1\} \le \cdots $ of a Zakharov-Shabat operator is symmetric,i.e. $\lambda ^\pm _k = - \lambda ^\mp _\{-k\}$ for all $k$, if and only if the sequence $(\gamma _k)_\{k\in \mathbb \{Z\}\}$ of gap lengths, $\gamma _k:= \lambda ^+_k - \lambda ^-_k$, is symmetric with respect to $k=0$.},
author = {Grébert, Benoît, Kappeler, Thomas},
journal = {Bulletin de la Société Mathématique de France},
keywords = {NLS equation; Zakharov-Shabat operators; action-angle variables; symmetries},
language = {eng},
number = {4},
pages = {603-618},
publisher = {Société mathématique de France},
title = {Symmetries of the nonlinear Schrödinger equation},
url = {http://eudml.org/doc/272455},
volume = {130},
year = {2002},
}
TY - JOUR
AU - Grébert, Benoît
AU - Kappeler, Thomas
TI - Symmetries of the nonlinear Schrödinger equation
JO - Bulletin de la Société Mathématique de France
PY - 2002
PB - Société mathématique de France
VL - 130
IS - 4
SP - 603
EP - 618
AB - Symmetries of the defocusing nonlinear Schrödinger equation are expressed in action-angle coordinates and characterized in terms of the periodic and Dirichlet spectrum of the associated Zakharov-Shabat system. Application: proof of the conjecture that the periodic spectrum $\cdots < \lambda ^-_k \le \lambda ^+_k < \lambda ^-_{k + 1} \le \cdots $ of a Zakharov-Shabat operator is symmetric,i.e. $\lambda ^\pm _k = - \lambda ^\mp _{-k}$ for all $k$, if and only if the sequence $(\gamma _k)_{k\in \mathbb {Z}}$ of gap lengths, $\gamma _k:= \lambda ^+_k - \lambda ^-_k$, is symmetric with respect to $k=0$.
LA - eng
KW - NLS equation; Zakharov-Shabat operators; action-angle variables; symmetries
UR - http://eudml.org/doc/272455
ER -
References
top- [1] J. Bourgain – « Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations », GAFA3 (1993), p. 107–156. Zbl0787.35097MR1209299
- [2] L. Faddeev & L. Takhtajan – Hamiltonian methods in the theory of solitons, Springer, 1987. Zbl1111.37001MR905674
- [3] B. Grébert – « Problèmes spectraux inverses pour les systèmes AKNS sur la droite réelle », Thèse, Université Paris-Nord, 1990.
- [4] B. Grébert & J. Guillot – « Gaps of one dimensional periodic AKNS systems », Forum Math5 (1993), p. 459–504. Zbl0784.34024MR1232720
- [5] B. Grébert & T. Kappeler – « Perturbations of the NLS equation », to appear in Milan J. of Math. Zbl1048.37067MR2120919
- [6] —, « Théorème de type KAM pour l’équation de Schrödinger non linéaire », 327 (1998), p. 473–478. Zbl0913.35125MR1652566
- [7] B. Grébert, T. Kappeler & J. Pöschel – « Normal form theory for NLS », preliminary version available (please contact authors). Zbl1298.35002
- [8] H. McKean & K. Vaninsky – « Action-angle variables for the cubic Schrödinger equation », CPAM50 (1997), p. 489–562. Zbl0990.35047MR1441912
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.