Unit vector fields on antipodally punctured spheres: big index, big volume

Fabiano G. B. Brito; Pablo M. Chacón; David L. Johnson

Bulletin de la Société Mathématique de France (2008)

  • Volume: 136, Issue: 1, page 147-157
  • ISSN: 0037-9484

Abstract

top
We establish in this paper a lower bound for the volume of a unit vector field v defined on 𝐒 n { ± x } , n = 2 , 3 . This lower bound is related to the sum of the absolute values of the indices of v at x and - x .

How to cite

top

Brito, Fabiano G. B., Chacón, Pablo M., and Johnson, David L.. "Unit vector fields on antipodally punctured spheres: big index, big volume." Bulletin de la Société Mathématique de France 136.1 (2008): 147-157. <http://eudml.org/doc/272456>.

@article{Brito2008,
abstract = {We establish in this paper a lower bound for the volume of a unit vector field $\vec\{v\}$ defined on $\textbf \{S\}^n\setminus \lbrace \pm x\rbrace $, $n=2,3$. This lower bound is related to the sum of the absolute values of the indices of $\vec\{v\}$ at $x$ and $-x$.},
author = {Brito, Fabiano G. B., Chacón, Pablo M., Johnson, David L.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {unit vector fields; volume; singularities; index},
language = {eng},
number = {1},
pages = {147-157},
publisher = {Société mathématique de France},
title = {Unit vector fields on antipodally punctured spheres: big index, big volume},
url = {http://eudml.org/doc/272456},
volume = {136},
year = {2008},
}

TY - JOUR
AU - Brito, Fabiano G. B.
AU - Chacón, Pablo M.
AU - Johnson, David L.
TI - Unit vector fields on antipodally punctured spheres: big index, big volume
JO - Bulletin de la Société Mathématique de France
PY - 2008
PB - Société mathématique de France
VL - 136
IS - 1
SP - 147
EP - 157
AB - We establish in this paper a lower bound for the volume of a unit vector field $\vec{v}$ defined on $\textbf {S}^n\setminus \lbrace \pm x\rbrace $, $n=2,3$. This lower bound is related to the sum of the absolute values of the indices of $\vec{v}$ at $x$ and $-x$.
LA - eng
KW - unit vector fields; volume; singularities; index
UR - http://eudml.org/doc/272456
ER -

References

top
  1. [1] V. Borrelli & O. Gil-Medrano – « Area minimizing vector fields on round 2 -spheres », 2006, preprint. Zbl1187.53029MR2629689
  2. [2] —, « A critical radius for unit Hopf vector fields on spheres », Math. Ann.334 (2006), p. 731–751. Zbl1115.53025MR2209254
  3. [3] F. G. B. Brito – « Total bending of flows with mean curvature correction », Differential Geom. Appl.12 (2000), p. 157–163. Zbl0995.53023MR1758847
  4. [4] F. G. B. Brito & P. M. Chacón – « A topological minorization for the volume of vector fields on 5-manifolds », Arch. Math. (Basel) 85 (2005), p. 283–292. Zbl1089.53025MR2172387
  5. [5] F. G. B. Brito, P. M. Chacón & A. M. Naveira – « On the volume of unit vector fields on spaces of constant sectional curvature », Comment. Math. Helv.79 (2004), p. 300–316. Zbl1057.53022MR2059434
  6. [6] P. M. Chacón – « Sobre a energia e energia corrigida de campos unitários e distribuições. Volume de campos unitários », Thèse, Universidade de São Paulo, Brazil, 2000, and Universidad de Valencia, Spain, 2001. 
  7. [7] S. S. Chern – « On the curvatura integra in a Riemannian manifold », Ann. of Math. (2) 46 (1945), p. 674–684. Zbl0060.38104MR14760
  8. [8] S. S. Chern & J. Simons – « Characteristic forms and geometric invariants », Ann. of Math. (2) 99 (1974), p. 48–69. Zbl0283.53036MR353327
  9. [9] O. Gil-Medrano & E. Llinares-Fuster – « Second variation of volume and energy of vector fields. Stability of Hopf vector fields », Math. Ann.320 (2001), p. 531–545. Zbl0989.53020MR1846776
  10. [10] H. Gluck & W. Ziller – « On the volume of a unit vector field on the three-sphere », Comment. Math. Helv.61 (1986), p. 177–192. Zbl0605.53022MR856085
  11. [11] D. L. Johnson – « Chern-Simons forms on associated bundles, and boundary terms », Geometria Dedicata120 (2007), p. 23–24. Zbl1148.53014MR2350146
  12. [12] S. L. Pedersen – « Volumes of vector fields on spheres », Trans. Amer. Math. Soc.336 (1993), p. 69–78. Zbl0771.53023MR1079056

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.