Intrinsic pseudo-volume forms for logarithmic pairs
Bulletin de la Société Mathématique de France (2010)
- Volume: 138, Issue: 4, page 543-582
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topDedieu, Thomas. "Intrinsic pseudo-volume forms for logarithmic pairs." Bulletin de la Société Mathématique de France 138.4 (2010): 543-582. <http://eudml.org/doc/272461>.
@article{Dedieu2010,
abstract = {We study an adaptation to the logarithmic case of the Kobayashi-Eisenman pseudo-volume form, or rather an adaptation of its variant defined by Claire Voisin, for which she replaces holomorphic maps by holomorphic $K$-correspondences. We define an intrinsic logarithmic pseudo-volume form $\Phi _\{X,D\}$ for every pair $(X,D)$ consisting of a complex manifold $X$ and a normal crossing Weil divisor $D$ on $X$, the positive part of which is reduced. We then prove that $\Phi _\{X,D\}$ is generically non-degenerate when $X$ is projective and $K_X+D$ is ample. This result is analogous to the classical Kobayashi-Ochiai theorem. We also show the vanishing of $\Phi _\{X,D\}$ for a large class of log-$K$-trivial pairs, which is an important step in the direction of the Kobayashi conjecture about infinitesimal measure hyperbolicity in the logarithmic case.},
author = {Dedieu, Thomas},
journal = {Bulletin de la Société Mathématique de France},
keywords = {log-$K$-correspondence; Kobayashi-Eisenman pseudo-volume form; logarithmic pair},
language = {eng},
number = {4},
pages = {543-582},
publisher = {Société mathématique de France},
title = {Intrinsic pseudo-volume forms for logarithmic pairs},
url = {http://eudml.org/doc/272461},
volume = {138},
year = {2010},
}
TY - JOUR
AU - Dedieu, Thomas
TI - Intrinsic pseudo-volume forms for logarithmic pairs
JO - Bulletin de la Société Mathématique de France
PY - 2010
PB - Société mathématique de France
VL - 138
IS - 4
SP - 543
EP - 582
AB - We study an adaptation to the logarithmic case of the Kobayashi-Eisenman pseudo-volume form, or rather an adaptation of its variant defined by Claire Voisin, for which she replaces holomorphic maps by holomorphic $K$-correspondences. We define an intrinsic logarithmic pseudo-volume form $\Phi _{X,D}$ for every pair $(X,D)$ consisting of a complex manifold $X$ and a normal crossing Weil divisor $D$ on $X$, the positive part of which is reduced. We then prove that $\Phi _{X,D}$ is generically non-degenerate when $X$ is projective and $K_X+D$ is ample. This result is analogous to the classical Kobayashi-Ochiai theorem. We also show the vanishing of $\Phi _{X,D}$ for a large class of log-$K$-trivial pairs, which is an important step in the direction of the Kobayashi conjecture about infinitesimal measure hyperbolicity in the logarithmic case.
LA - eng
KW - log-$K$-correspondence; Kobayashi-Eisenman pseudo-volume form; logarithmic pair
UR - http://eudml.org/doc/272461
ER -
References
top- [1] S. Bloch – « On an argument of Mumford in the theory of algebraic cycles », in Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, 1980, p. 217–221. Zbl0508.14004MR605343
- [2] S. Bloch & V. Srinivas – « Remarks on correspondences and algebraic cycles », Amer. J. Math.105 (1983), p. 1235–1253. Zbl0525.14003MR714776
- [3] F. Campana – « Orbifolds, special varieties and classification theory », Ann. Inst. Fourier (Grenoble) 54 (2004), p. 499–630. Zbl1062.14014MR2097416
- [4] J. Carlson & P. A. Griffiths – « A defect relation for equidimensional holomorphic mappings between algebraic varieties », Ann. of Math.95 (1972), p. 557–584. Zbl0248.32018MR311935
- [5] L. Clozel & E. Ullmo – « Correspondances modulaires et mesures invariantes », J. reine angew. Math. 558 (2003), p. 47–83. Zbl1042.11027MR1979182
- [6] J.-P. Demailly – « Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials », in Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., 1997, p. 285–360. Zbl0919.32014MR1492539
- [7] J.-P. Demailly, L. Lempert & B. Shiffman – « Algebraic approximations of holomorphic maps from Stein domains to projective manifolds », Duke Math. J.76 (1994), p. 333–363. Zbl0861.32006MR1302317
- [8] H. M. Farkas & I. Kra – Riemann surfaces, second éd., Graduate Texts in Math., vol. 71, Springer, 1992. Zbl0764.30001MR1139765
- [9] M. Green & P. A. Griffiths – « Two applications of algebraic geometry to entire holomorphic mappings », in The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), Springer, 1980, p. 41–74. Zbl0508.32010MR609557
- [10] P. A. Griffiths – « Holomorphic mapping into canonical algebraic varieties », Ann. of Math.93 (1971), p. 439–458. Zbl0214.48601MR281954
- [11] —, Entire holomorphic mappings in one and several complex variables, Princeton Univ. Press, 1976, The fifth set of Hermann Weyl Lectures, given at the Institute for Advanced Study, Princeton, N. J., October and November 1974, Annals of Mathematics Studies, No. 85. Zbl0317.32023MR447638
- [12] R. Kobayashi – « Kähler-Einstein metric on an open algebraic manifold », Osaka J. Math.21 (1984), p. 399–418. Zbl0582.32011MR752470
- [13] S. Kobayashi – « Intrinsic distances, measures and geometric function theory », Bull. Amer. Math. Soc.82 (1976), p. 357–416. Zbl0346.32031MR414940
- [14] S. Kobayashi & T. Ochiai – « Mappings into compact manifolds with negative first Chern class », J. Math. Soc. Japan23 (1971), p. 137–148. Zbl0203.39101MR288316
- [15] —, « Meromorphic mappings onto compact complex spaces of general type », Invent. Math.31 (1975), p. 7–16. Zbl0331.32020MR402127
- [16] J. Kollár, Y. Miyaoka & S. Mori – « Rationally connected varieties », J. Algebraic Geom.1 (1992), p. 429–448. Zbl0780.14026MR1158625
- [17] S. Lang – « Hyperbolic and Diophantine analysis », Bull. Amer. Math. Soc. (N.S.) 14 (1986), p. 159–205. Zbl0602.14019MR828820
- [18] D. Mumford – « Rational equivalence of -cycles on surfaces », J. Math. Kyoto Univ.9 (1968), p. 195–204. Zbl0184.46603MR249428
- [19] G. Tian & S. T. Yau – « Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry », in Mathematical aspects of string theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, 1987, p. 574–628. Zbl0682.53064MR915840
- [20] K. Ueno – Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Math., vol. 439, Springer, 1975. Zbl0299.14007MR506253
- [21] E. Ullmo & A. Yafaev – « Points rationnels des variétés de Shimura : un principe du « tout ou rien » », preprint, 2007. Zbl1264.11052
- [22] C. Voisin – Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, vol. 10, Soc. Math. France, 2002. Zbl1032.14001MR1988456
- [23] —, « On some problems of Kobayashi and Lang; algebraic approaches », in Current developments in mathematics, 2003, Int. Press, Somerville, MA, 2003, p. 53–125. Zbl1215.32014MR2132645
- [24] —, « Intrinsic pseudo-volume forms and -correspondences », in The Fano Conference, Univ. Torino, Turin, 2004, p. 761–792. MR2112602
- [25] S. T. Yau – « Intrinsic measures of compact complex manifolds », Math. Ann.212 (1975), p. 317–329. Zbl0313.32031MR367261
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.