Intrinsic pseudo-volume forms for logarithmic pairs

Thomas Dedieu

Bulletin de la Société Mathématique de France (2010)

  • Volume: 138, Issue: 4, page 543-582
  • ISSN: 0037-9484

Abstract

top
We study an adaptation to the logarithmic case of the Kobayashi-Eisenman pseudo-volume form, or rather an adaptation of its variant defined by Claire Voisin, for which she replaces holomorphic maps by holomorphic K -correspondences. We define an intrinsic logarithmic pseudo-volume form Φ X , D for every pair ( X , D ) consisting of a complex manifold X and a normal crossing Weil divisor D on X , the positive part of which is reduced. We then prove that Φ X , D is generically non-degenerate when X is projective and K X + D is ample. This result is analogous to the classical Kobayashi-Ochiai theorem. We also show the vanishing of Φ X , D for a large class of log- K -trivial pairs, which is an important step in the direction of the Kobayashi conjecture about infinitesimal measure hyperbolicity in the logarithmic case.

How to cite

top

Dedieu, Thomas. "Intrinsic pseudo-volume forms for logarithmic pairs." Bulletin de la Société Mathématique de France 138.4 (2010): 543-582. <http://eudml.org/doc/272461>.

@article{Dedieu2010,
abstract = {We study an adaptation to the logarithmic case of the Kobayashi-Eisenman pseudo-volume form, or rather an adaptation of its variant defined by Claire Voisin, for which she replaces holomorphic maps by holomorphic $K$-correspondences. We define an intrinsic logarithmic pseudo-volume form $\Phi _\{X,D\}$ for every pair $(X,D)$ consisting of a complex manifold $X$ and a normal crossing Weil divisor $D$ on $X$, the positive part of which is reduced. We then prove that $\Phi _\{X,D\}$ is generically non-degenerate when $X$ is projective and $K_X+D$ is ample. This result is analogous to the classical Kobayashi-Ochiai theorem. We also show the vanishing of $\Phi _\{X,D\}$ for a large class of log-$K$-trivial pairs, which is an important step in the direction of the Kobayashi conjecture about infinitesimal measure hyperbolicity in the logarithmic case.},
author = {Dedieu, Thomas},
journal = {Bulletin de la Société Mathématique de France},
keywords = {log-$K$-correspondence; Kobayashi-Eisenman pseudo-volume form; logarithmic pair},
language = {eng},
number = {4},
pages = {543-582},
publisher = {Société mathématique de France},
title = {Intrinsic pseudo-volume forms for logarithmic pairs},
url = {http://eudml.org/doc/272461},
volume = {138},
year = {2010},
}

TY - JOUR
AU - Dedieu, Thomas
TI - Intrinsic pseudo-volume forms for logarithmic pairs
JO - Bulletin de la Société Mathématique de France
PY - 2010
PB - Société mathématique de France
VL - 138
IS - 4
SP - 543
EP - 582
AB - We study an adaptation to the logarithmic case of the Kobayashi-Eisenman pseudo-volume form, or rather an adaptation of its variant defined by Claire Voisin, for which she replaces holomorphic maps by holomorphic $K$-correspondences. We define an intrinsic logarithmic pseudo-volume form $\Phi _{X,D}$ for every pair $(X,D)$ consisting of a complex manifold $X$ and a normal crossing Weil divisor $D$ on $X$, the positive part of which is reduced. We then prove that $\Phi _{X,D}$ is generically non-degenerate when $X$ is projective and $K_X+D$ is ample. This result is analogous to the classical Kobayashi-Ochiai theorem. We also show the vanishing of $\Phi _{X,D}$ for a large class of log-$K$-trivial pairs, which is an important step in the direction of the Kobayashi conjecture about infinitesimal measure hyperbolicity in the logarithmic case.
LA - eng
KW - log-$K$-correspondence; Kobayashi-Eisenman pseudo-volume form; logarithmic pair
UR - http://eudml.org/doc/272461
ER -

References

top
  1. [1] S. Bloch – « On an argument of Mumford in the theory of algebraic cycles », in Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, Sijthoff & Noordhoff, 1980, p. 217–221. Zbl0508.14004MR605343
  2. [2] S. Bloch & V. Srinivas – « Remarks on correspondences and algebraic cycles », Amer. J. Math.105 (1983), p. 1235–1253. Zbl0525.14003MR714776
  3. [3] F. Campana – « Orbifolds, special varieties and classification theory », Ann. Inst. Fourier (Grenoble) 54 (2004), p. 499–630. Zbl1062.14014MR2097416
  4. [4] J. Carlson & P. A. Griffiths – « A defect relation for equidimensional holomorphic mappings between algebraic varieties », Ann. of Math.95 (1972), p. 557–584. Zbl0248.32018MR311935
  5. [5] L. Clozel & E. Ullmo – « Correspondances modulaires et mesures invariantes », J. reine angew. Math. 558 (2003), p. 47–83. Zbl1042.11027MR1979182
  6. [6] J.-P. Demailly – « Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials », in Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., 1997, p. 285–360. Zbl0919.32014MR1492539
  7. [7] J.-P. Demailly, L. Lempert & B. Shiffman – « Algebraic approximations of holomorphic maps from Stein domains to projective manifolds », Duke Math. J.76 (1994), p. 333–363. Zbl0861.32006MR1302317
  8. [8] H. M. Farkas & I. Kra – Riemann surfaces, second éd., Graduate Texts in Math., vol. 71, Springer, 1992. Zbl0764.30001MR1139765
  9. [9] M. Green & P. A. Griffiths – « Two applications of algebraic geometry to entire holomorphic mappings », in The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), Springer, 1980, p. 41–74. Zbl0508.32010MR609557
  10. [10] P. A. Griffiths – « Holomorphic mapping into canonical algebraic varieties », Ann. of Math.93 (1971), p. 439–458. Zbl0214.48601MR281954
  11. [11] —, Entire holomorphic mappings in one and several complex variables, Princeton Univ. Press, 1976, The fifth set of Hermann Weyl Lectures, given at the Institute for Advanced Study, Princeton, N. J., October and November 1974, Annals of Mathematics Studies, No. 85. Zbl0317.32023MR447638
  12. [12] R. Kobayashi – « Kähler-Einstein metric on an open algebraic manifold », Osaka J. Math.21 (1984), p. 399–418. Zbl0582.32011MR752470
  13. [13] S. Kobayashi – « Intrinsic distances, measures and geometric function theory », Bull. Amer. Math. Soc.82 (1976), p. 357–416. Zbl0346.32031MR414940
  14. [14] S. Kobayashi & T. Ochiai – « Mappings into compact manifolds with negative first Chern class », J. Math. Soc. Japan23 (1971), p. 137–148. Zbl0203.39101MR288316
  15. [15] —, « Meromorphic mappings onto compact complex spaces of general type », Invent. Math.31 (1975), p. 7–16. Zbl0331.32020MR402127
  16. [16] J. Kollár, Y. Miyaoka & S. Mori – « Rationally connected varieties », J. Algebraic Geom.1 (1992), p. 429–448. Zbl0780.14026MR1158625
  17. [17] S. Lang – « Hyperbolic and Diophantine analysis », Bull. Amer. Math. Soc. (N.S.) 14 (1986), p. 159–205. Zbl0602.14019MR828820
  18. [18] D. Mumford – « Rational equivalence of 0 -cycles on surfaces », J. Math. Kyoto Univ.9 (1968), p. 195–204. Zbl0184.46603MR249428
  19. [19] G. Tian & S. T. Yau – « Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry », in Mathematical aspects of string theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, 1987, p. 574–628. Zbl0682.53064MR915840
  20. [20] K. Ueno – Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Math., vol. 439, Springer, 1975. Zbl0299.14007MR506253
  21. [21] E. Ullmo & A. Yafaev – « Points rationnels des variétés de Shimura : un principe du « tout ou rien » », preprint, 2007. Zbl1264.11052
  22. [22] C. Voisin – Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés, vol. 10, Soc. Math. France, 2002. Zbl1032.14001MR1988456
  23. [23] —, « On some problems of Kobayashi and Lang; algebraic approaches », in Current developments in mathematics, 2003, Int. Press, Somerville, MA, 2003, p. 53–125. Zbl1215.32014MR2132645
  24. [24] —, « Intrinsic pseudo-volume forms and K -correspondences », in The Fano Conference, Univ. Torino, Turin, 2004, p. 761–792. MR2112602
  25. [25] S. T. Yau – « Intrinsic measures of compact complex manifolds », Math. Ann.212 (1975), p. 317–329. Zbl0313.32031MR367261

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.