Singularities of -divisors in the jacobian
Christian Pauly; Emma Previato
Bulletin de la Société Mathématique de France (2001)
- Volume: 129, Issue: 3, page 449-485
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topPauly, Christian, and Previato, Emma. "Singularities of $2\Theta $-divisors in the jacobian." Bulletin de la Société Mathématique de France 129.3 (2001): 449-485. <http://eudml.org/doc/272462>.
@article{Pauly2001,
abstract = {We consider the linear system $|2\Theta _0|$ of second order theta functions over the Jacobian $JC$ of a non-hyperelliptic curve $C$. A result by J.Fay says that a divisor $D \in |2\Theta _0|$ contains the origin $\mathcal \{O\} \in JC$ with multiplicity $4$ if and only if $D$ contains the surface $C-C = \lbrace \mathcal \{O\}(p-q) \mid p,q \in C \rbrace \subset JC$. In this paper we generalize Fay’s result and some previous work by R.C.Gunning. More precisely, we describe the relationship between divisors containing $\mathcal \{O\}$ with multiplicity $6$, divisors containing the fourfold $C_2 - C_2 = \lbrace \mathcal \{O\}(p+q-r-s) \mid p,q,r,s \in C \rbrace $, and divisors singular along $C-C$, using the third exterior product of the canonical space and the space of quadrics containing the canonical curve. Moreover we show that some of these spaces are equal to the linear span of Brill-Noether loci in the moduli space of semi-stable rank $2$ vector bundles with canonical determinant over $C$, which can be embedded in $|2\Theta _0|$.},
author = {Pauly, Christian, Previato, Emma},
journal = {Bulletin de la Société Mathématique de France},
keywords = {theta functions; jacobian; canonical curve; vector bundle},
language = {eng},
number = {3},
pages = {449-485},
publisher = {Société mathématique de France},
title = {Singularities of $2\Theta $-divisors in the jacobian},
url = {http://eudml.org/doc/272462},
volume = {129},
year = {2001},
}
TY - JOUR
AU - Pauly, Christian
AU - Previato, Emma
TI - Singularities of $2\Theta $-divisors in the jacobian
JO - Bulletin de la Société Mathématique de France
PY - 2001
PB - Société mathématique de France
VL - 129
IS - 3
SP - 449
EP - 485
AB - We consider the linear system $|2\Theta _0|$ of second order theta functions over the Jacobian $JC$ of a non-hyperelliptic curve $C$. A result by J.Fay says that a divisor $D \in |2\Theta _0|$ contains the origin $\mathcal {O} \in JC$ with multiplicity $4$ if and only if $D$ contains the surface $C-C = \lbrace \mathcal {O}(p-q) \mid p,q \in C \rbrace \subset JC$. In this paper we generalize Fay’s result and some previous work by R.C.Gunning. More precisely, we describe the relationship between divisors containing $\mathcal {O}$ with multiplicity $6$, divisors containing the fourfold $C_2 - C_2 = \lbrace \mathcal {O}(p+q-r-s) \mid p,q,r,s \in C \rbrace $, and divisors singular along $C-C$, using the third exterior product of the canonical space and the space of quadrics containing the canonical curve. Moreover we show that some of these spaces are equal to the linear span of Brill-Noether loci in the moduli space of semi-stable rank $2$ vector bundles with canonical determinant over $C$, which can be embedded in $|2\Theta _0|$.
LA - eng
KW - theta functions; jacobian; canonical curve; vector bundle
UR - http://eudml.org/doc/272462
ER -
References
top- [1] E. Arbarello, M. Cornalba, P. A. Griffiths & J. Harris – Geometry of algebraic curves, vol. 1, Springer Verlag, New York, Berlin, Heidelberg, Tokyo, 1985. Zbl0559.14017MR770932
- [2] E. Arbarello & J. Harris – « Canonical curves and quadrics of rank », Comp. Math.43 (1981), p. 145–179. Zbl0494.14011MR622446
- [3] A. Beauville – « Fibrés de rang sur une courbe, fibré déterminant et fonctions thêta », Bull. Soc. Math. France116 (1988), p. 431–448. Zbl0691.14016MR1005388
- [4] —, « Fibrés de rang sur une courbe, fibré déterminant et fonctions thêta, II », Bull. Soc. Math. France119 (1991), p. 259–291. Zbl0756.14017MR1125667
- [5] A. Bertram – « Moduli of rank vector bundles, theta divisor and the geometry of curves in projective space », J. Diff. Geom.35 (1992), p. 429–469. Zbl0787.14014MR1158344
- [6] S. Brivio & A. Verra – « The theta divisor of is very ample if is not hyperelliptic », Duke Math. J.82 (1996), p. 503–552. Zbl0876.14024MR1387683
- [7] J. Fay – Theta Functions on Riemann Surfaces, Lecture Notes in Math., vol. 352, Springer Verlag, Berlin, Heidelberg, New York, 1973. Zbl0281.30013MR335789
- [8] B. van Geemen & G. van der Geer – « Kummer varieties and the moduli spaces of abelian varieties », Am. J. Math.08 (1986), p. 615–642. Zbl0612.14044MR844633
- [9] B. van Geemen & E. Izadi – « The tangent space to the moduli space of vector bundles on a curve and the singular locus of the theta divisor of the Jacobian », J. Alg. Geom.10 (2001), p. 133–177. Zbl0989.14010MR1795553
- [10] M. Green – « Quadrics of rank four in the ideal of the canonical curve », Invent. Math.75 (1984), p. 85–104. Zbl0542.14018MR728141
- [11] R. Gunning – « Some identities for Abelian integrals, II », unpublished preprint. Zbl0597.14037MR821313
- [12] —, « Riemann surfaces and their associated Wirtinger varieties », Bull. Am. Math. Soc.11 (1984), p. 287–316. Zbl0552.14009MR752789
- [13] —, « Some identities for Abelian integrals », Am. J. Math.180 (1986), p. 39–74. Zbl0597.14037MR821313
- [14] E. Izadi – « Fonctions thêta du second ordre sur la jacobienne d’une courbe lisse », Math. Ann.289 (1991), p. 189–202. Zbl0735.14029MR1092172
- [15] —, « The geometric structure of , the structure of the Prym map, double solids and -divisors », J. reine angew. Math. 462 (1995), p. 93–158. Zbl0819.14017MR1329904
- [16] H. Lange & M. Narasimhan – « Maximal subbundles of rank two vector bundles on curves », Math. Ann.266 (1983), p. 55–72. Zbl0507.14005MR722927
- [17] Y. Laszlo – « Un théorème de Riemann pour les diviseurs thêta sur les espaces de modules de fibrés stables », Duke Math. J.64 (1991), p. 333–347. Zbl0753.14023MR1136379
- [18] S. Mukai – « Vector bundles and Brill-Noether theory », Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), Math. Sci. Res. Inst. Publ., vol. 28, p. 145–158. Zbl0866.14024MR1397062
- [19] —, « Curves and Grassmannians », Algebraic Geometry and Related Topics (J.-H. Yang, Y. Namikawa & K. Ueno, éds.), 1992.
- [20] —, « Curves and symmetric spaces, I », Amer. J. Math.117 (1995), p. 1627–1644. Zbl0871.14025MR1363081
- [21] D. Mumford – « Prym varieties I », Contributions to Analysis (L. Ahlfors, I. Kra, B. Maskit & L. Niremberg, éds.), Academic Press, 1974, p. 325–350. Zbl0299.14018MR379510
- [22] W. Oxbury, C. Pauly & E. Previato – « Subvarieties of and -divisors in the Jacobian », Trans. Amer. Math. Soc.350 (1998), p. 3587–3614. Zbl0898.14014MR1467474
- [23] K. Petri – « Über die Invariante Darstellung Algebraischer Funktionen einer Veranderlichen », Math. Ann.88 (1922), p. 242–289. MR1512130JFM49.0264.02
- [24] R. Smith & R. Varley – « Deformations of theta divisors and the rank quadrics problem », Comp. Math.76 (1990), p. 367–398. Zbl0745.14012MR1080008
- [25] J. Wahl – « On cohomology of the square of an ideal sheaf », J. Alg. Geom.6 (1997), p. 481–511. Zbl0892.14022MR1487224
- [26] G. Welters – « The surface - on Jacobi varieties and second order theta functions », Acta. Math.157 (1986), p. 1–22. Zbl0771.14012MR857677
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.