Singularities of 2 Θ -divisors in the jacobian

Christian Pauly; Emma Previato

Bulletin de la Société Mathématique de France (2001)

  • Volume: 129, Issue: 3, page 449-485
  • ISSN: 0037-9484

Abstract

top
We consider the linear system | 2 Θ 0 | of second order theta functions over the Jacobian J C of a non-hyperelliptic curve C . A result by J.Fay says that a divisor D | 2 Θ 0 | contains the origin 𝒪 J C with multiplicity 4 if and only if D contains the surface C - C = { 𝒪 ( p - q ) p , q C } J C . In this paper we generalize Fay’s result and some previous work by R.C.Gunning. More precisely, we describe the relationship between divisors containing 𝒪 with multiplicity 6 , divisors containing the fourfold C 2 - C 2 = { 𝒪 ( p + q - r - s ) p , q , r , s C } , and divisors singular along C - C , using the third exterior product of the canonical space and the space of quadrics containing the canonical curve. Moreover we show that some of these spaces are equal to the linear span of Brill-Noether loci in the moduli space of semi-stable rank 2 vector bundles with canonical determinant over C , which can be embedded in | 2 Θ 0 | .

How to cite

top

Pauly, Christian, and Previato, Emma. "Singularities of $2\Theta $-divisors in the jacobian." Bulletin de la Société Mathématique de France 129.3 (2001): 449-485. <http://eudml.org/doc/272462>.

@article{Pauly2001,
abstract = {We consider the linear system $|2\Theta _0|$ of second order theta functions over the Jacobian $JC$ of a non-hyperelliptic curve $C$. A result by J.Fay says that a divisor $D \in |2\Theta _0|$ contains the origin $\mathcal \{O\} \in JC$ with multiplicity $4$ if and only if $D$ contains the surface $C-C = \lbrace \mathcal \{O\}(p-q) \mid p,q \in C \rbrace \subset JC$. In this paper we generalize Fay’s result and some previous work by R.C.Gunning. More precisely, we describe the relationship between divisors containing $\mathcal \{O\}$ with multiplicity $6$, divisors containing the fourfold $C_2 - C_2 = \lbrace \mathcal \{O\}(p+q-r-s) \mid p,q,r,s \in C \rbrace $, and divisors singular along $C-C$, using the third exterior product of the canonical space and the space of quadrics containing the canonical curve. Moreover we show that some of these spaces are equal to the linear span of Brill-Noether loci in the moduli space of semi-stable rank $2$ vector bundles with canonical determinant over $C$, which can be embedded in $|2\Theta _0|$.},
author = {Pauly, Christian, Previato, Emma},
journal = {Bulletin de la Société Mathématique de France},
keywords = {theta functions; jacobian; canonical curve; vector bundle},
language = {eng},
number = {3},
pages = {449-485},
publisher = {Société mathématique de France},
title = {Singularities of $2\Theta $-divisors in the jacobian},
url = {http://eudml.org/doc/272462},
volume = {129},
year = {2001},
}

TY - JOUR
AU - Pauly, Christian
AU - Previato, Emma
TI - Singularities of $2\Theta $-divisors in the jacobian
JO - Bulletin de la Société Mathématique de France
PY - 2001
PB - Société mathématique de France
VL - 129
IS - 3
SP - 449
EP - 485
AB - We consider the linear system $|2\Theta _0|$ of second order theta functions over the Jacobian $JC$ of a non-hyperelliptic curve $C$. A result by J.Fay says that a divisor $D \in |2\Theta _0|$ contains the origin $\mathcal {O} \in JC$ with multiplicity $4$ if and only if $D$ contains the surface $C-C = \lbrace \mathcal {O}(p-q) \mid p,q \in C \rbrace \subset JC$. In this paper we generalize Fay’s result and some previous work by R.C.Gunning. More precisely, we describe the relationship between divisors containing $\mathcal {O}$ with multiplicity $6$, divisors containing the fourfold $C_2 - C_2 = \lbrace \mathcal {O}(p+q-r-s) \mid p,q,r,s \in C \rbrace $, and divisors singular along $C-C$, using the third exterior product of the canonical space and the space of quadrics containing the canonical curve. Moreover we show that some of these spaces are equal to the linear span of Brill-Noether loci in the moduli space of semi-stable rank $2$ vector bundles with canonical determinant over $C$, which can be embedded in $|2\Theta _0|$.
LA - eng
KW - theta functions; jacobian; canonical curve; vector bundle
UR - http://eudml.org/doc/272462
ER -

References

top
  1. [1] E. Arbarello, M. Cornalba, P. A. Griffiths & J. Harris – Geometry of algebraic curves, vol. 1, Springer Verlag, New York, Berlin, Heidelberg, Tokyo, 1985. Zbl0559.14017MR770932
  2. [2] E. Arbarello & J. Harris – « Canonical curves and quadrics of rank 4 », Comp. Math.43 (1981), p. 145–179. Zbl0494.14011MR622446
  3. [3] A. Beauville – « Fibrés de rang 2 sur une courbe, fibré déterminant et fonctions thêta », Bull. Soc. Math. France116 (1988), p. 431–448. Zbl0691.14016MR1005388
  4. [4] —, « Fibrés de rang 2 sur une courbe, fibré déterminant et fonctions thêta, II », Bull. Soc. Math. France119 (1991), p. 259–291. Zbl0756.14017MR1125667
  5. [5] A. Bertram – « Moduli of rank 2 vector bundles, theta divisor and the geometry of curves in projective space », J. Diff. Geom.35 (1992), p. 429–469. Zbl0787.14014MR1158344
  6. [6] S. Brivio & A. Verra – « The theta divisor of 𝒮 U C ( 2 , 2 d ) is very ample if C is not hyperelliptic », Duke Math. J.82 (1996), p. 503–552. Zbl0876.14024MR1387683
  7. [7] J. Fay – Theta Functions on Riemann Surfaces, Lecture Notes in Math., vol. 352, Springer Verlag, Berlin, Heidelberg, New York, 1973. Zbl0281.30013MR335789
  8. [8] B. van Geemen & G. van der Geer – « Kummer varieties and the moduli spaces of abelian varieties », Am. J. Math.08 (1986), p. 615–642. Zbl0612.14044MR844633
  9. [9] B. van Geemen & E. Izadi – « The tangent space to the moduli space of vector bundles on a curve and the singular locus of the theta divisor of the Jacobian », J. Alg. Geom.10 (2001), p. 133–177. Zbl0989.14010MR1795553
  10. [10] M. Green – « Quadrics of rank four in the ideal of the canonical curve », Invent. Math.75 (1984), p. 85–104. Zbl0542.14018MR728141
  11. [11] R. Gunning – « Some identities for Abelian integrals, II », unpublished preprint. Zbl0597.14037MR821313
  12. [12] —, « Riemann surfaces and their associated Wirtinger varieties », Bull. Am. Math. Soc.11 (1984), p. 287–316. Zbl0552.14009MR752789
  13. [13] —, « Some identities for Abelian integrals », Am. J. Math.180 (1986), p. 39–74. Zbl0597.14037MR821313
  14. [14] E. Izadi – « Fonctions thêta du second ordre sur la jacobienne d’une courbe lisse », Math. Ann.289 (1991), p. 189–202. Zbl0735.14029MR1092172
  15. [15] —, « The geometric structure of 𝒜 4 , the structure of the Prym map, double solids and Γ 00 -divisors », J. reine angew. Math. 462 (1995), p. 93–158. Zbl0819.14017MR1329904
  16. [16] H. Lange & M. Narasimhan – « Maximal subbundles of rank two vector bundles on curves », Math. Ann.266 (1983), p. 55–72. Zbl0507.14005MR722927
  17. [17] Y. Laszlo – « Un théorème de Riemann pour les diviseurs thêta sur les espaces de modules de fibrés stables », Duke Math. J.64 (1991), p. 333–347. Zbl0753.14023MR1136379
  18. [18] S. Mukai – « Vector bundles and Brill-Noether theory », Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), Math. Sci. Res. Inst. Publ., vol. 28, p. 145–158. Zbl0866.14024MR1397062
  19. [19] —, « Curves and Grassmannians », Algebraic Geometry and Related Topics (J.-H. Yang, Y. Namikawa & K. Ueno, éds.), 1992. 
  20. [20] —, « Curves and symmetric spaces, I », Amer. J. Math.117 (1995), p. 1627–1644. Zbl0871.14025MR1363081
  21. [21] D. Mumford – « Prym varieties I », Contributions to Analysis (L. Ahlfors, I. Kra, B. Maskit & L. Niremberg, éds.), Academic Press, 1974, p. 325–350. Zbl0299.14018MR379510
  22. [22] W. Oxbury, C. Pauly & E. Previato – « Subvarieties of 𝒮 U C ( 2 ) and 2 θ -divisors in the Jacobian », Trans. Amer. Math. Soc.350 (1998), p. 3587–3614. Zbl0898.14014MR1467474
  23. [23] K. Petri – « Über die Invariante Darstellung Algebraischer Funktionen einer Veranderlichen », Math. Ann.88 (1922), p. 242–289. MR1512130JFM49.0264.02
  24. [24] R. Smith & R. Varley – « Deformations of theta divisors and the rank 4 quadrics problem », Comp. Math.76 (1990), p. 367–398. Zbl0745.14012MR1080008
  25. [25] J. Wahl – « On cohomology of the square of an ideal sheaf », J. Alg. Geom.6 (1997), p. 481–511. Zbl0892.14022MR1487224
  26. [26] G. Welters – « The surface C - C on Jacobi varieties and second order theta functions », Acta. Math.157 (1986), p. 1–22. Zbl0771.14012MR857677

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.