On cubics and quartics through a canonical curve
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2003)
- Volume: 2, Issue: 4, page 803-822
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topPauly, Christian. "On cubics and quartics through a canonical curve." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 2.4 (2003): 803-822. <http://eudml.org/doc/84520>.
@article{Pauly2003,
abstract = {We construct families of quartic and cubic hypersurfaces through a canonical curve, which are parametrized by an open subset in a grassmannian and a Flag variety respectively. Using G. Kempf’s cohomological obstruction theory, we show that these families cut out the canonical curve and that the quartics are birational (via a blowing-up of a linear subspace) to quadric bundles over the projective plane, whose Steinerian curve equals the canonical curve},
author = {Pauly, Christian},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {803-822},
publisher = {Scuola normale superiore},
title = {On cubics and quartics through a canonical curve},
url = {http://eudml.org/doc/84520},
volume = {2},
year = {2003},
}
TY - JOUR
AU - Pauly, Christian
TI - On cubics and quartics through a canonical curve
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2003
PB - Scuola normale superiore
VL - 2
IS - 4
SP - 803
EP - 822
AB - We construct families of quartic and cubic hypersurfaces through a canonical curve, which are parametrized by an open subset in a grassmannian and a Flag variety respectively. Using G. Kempf’s cohomological obstruction theory, we show that these families cut out the canonical curve and that the quartics are birational (via a blowing-up of a linear subspace) to quadric bundles over the projective plane, whose Steinerian curve equals the canonical curve
LA - eng
UR - http://eudml.org/doc/84520
ER -
References
top- [ACGH] E. Arbarello – M. Cornalba – P. A. Griffiths – J. Harris, “Geometry of algebraic curves”, vol. 1, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1985. Zbl0559.14017MR770932
- [BV] S. Brivio – A. Verra, The theta divisor of is very ample if is not hyperelliptic, Duke Math. J. 82 (1996), 503-552. Zbl0876.14024MR1387683
- [DK] I. Dolgachev – V. Kanev, Polar Covariants of Plane Cubics and Quartics, Adv. Math. 98 (1993), 216-301. Zbl0791.14013MR1213725
- [vGvG] B. van Geemen – G. van der Geer, Kummer varieties and the moduli spaces of abelian varieties, Amer. J. Math. 108 (1986), 615-642. Zbl0612.14044MR844633
- [vGI] B. van Geemen – E. Izadi, The tangent space to the moduli space of vector bundles on a curve and the singular locus of the theta divisor of the Jacobian, J. Algebraic Geom. 10 (2001), 133-177. Zbl0989.14010MR1795553
- [Gr] M. Green, Quadrics of rank four in the ideal of the canonical curve, Invent. Math. 75 (1984), 85-104. Zbl0542.14018MR728141
- [IP] E. Izadi – C. Pauly, Some Properties of Second Order Theta Functions on Prym Varieties, Math. Nachr. 230 (2001), 73-91. Zbl1075.14511MR1854878
- [K1] G. Kempf, “Abelian Integrals”, Monografias Inst. Mat. No. 13, Univ. Nacional Autónoma Mexico, 1984. Zbl0541.14023MR743421
- [K2] G. Kempf, The equation defining a curve of genus , Proc. of the Amer. Math. Soc. 97 (1986), 214-225. Zbl0595.14021MR835869
- [KS] G. Kempf – F.-O. Schreyer, A Torelli theorem for osculating cones to the theta divisor, Compositio Math. 67 (1988), 343-353. Zbl0665.14018MR959216
- [OPP] W. M. Oxbury – C. Pauly – E. Previato, Subvarieties of and -divisors in the Jacobian, Trans. Amer. Math. Soc., Vol. 350 (1998), 3587-3614. Zbl0898.14014MR1467474
- [PP] C. Pauly – E. Previato, Singularities of 2-divisors in the Jacobian, Bull. Soc. Math. France 129 (2001), 449-485. Zbl1016.14013MR1881203
- [We] G. Welters, The surface on Jacobi varieties and second order theta functions, Acta Math. 157 (1986), 1-22. Zbl0771.14012MR857677
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.