The stack of microlocal perverse sheaves

Ingo Waschkies

Bulletin de la Société Mathématique de France (2004)

  • Volume: 132, Issue: 3, page 397-462
  • ISSN: 0037-9484

Abstract

top
In this paper we construct the abelian stack of microlocal perverse sheaves on the projective cotangent bundle of a complex manifold. Following ideas of Andronikof we first consider microlocal perverse sheaves at a point using classical tools from microlocal sheaf theory. Then we will use Kashiwara-Schapira’s theory of analytic ind-sheaves to globalize our construction. This presentation allows us to formulate explicitly a global microlocal Riemann-Hilbert correspondence.

How to cite

top

Waschkies, Ingo. "The stack of microlocal perverse sheaves." Bulletin de la Société Mathématique de France 132.3 (2004): 397-462. <http://eudml.org/doc/272464>.

@article{Waschkies2004,
abstract = {In this paper we construct the abelian stack of microlocal perverse sheaves on the projective cotangent bundle of a complex manifold. Following ideas of Andronikof we first consider microlocal perverse sheaves at a point using classical tools from microlocal sheaf theory. Then we will use Kashiwara-Schapira’s theory of analytic ind-sheaves to globalize our construction. This presentation allows us to formulate explicitly a global microlocal Riemann-Hilbert correspondence.},
author = {Waschkies, Ingo},
journal = {Bulletin de la Société Mathématique de France},
keywords = {sheaf; constructible sheaf; perverse sheaf; microlocal sheaf theory; ind-sheaf; $2$-limit; stack},
language = {eng},
number = {3},
pages = {397-462},
publisher = {Société mathématique de France},
title = {The stack of microlocal perverse sheaves},
url = {http://eudml.org/doc/272464},
volume = {132},
year = {2004},
}

TY - JOUR
AU - Waschkies, Ingo
TI - The stack of microlocal perverse sheaves
JO - Bulletin de la Société Mathématique de France
PY - 2004
PB - Société mathématique de France
VL - 132
IS - 3
SP - 397
EP - 462
AB - In this paper we construct the abelian stack of microlocal perverse sheaves on the projective cotangent bundle of a complex manifold. Following ideas of Andronikof we first consider microlocal perverse sheaves at a point using classical tools from microlocal sheaf theory. Then we will use Kashiwara-Schapira’s theory of analytic ind-sheaves to globalize our construction. This presentation allows us to formulate explicitly a global microlocal Riemann-Hilbert correspondence.
LA - eng
KW - sheaf; constructible sheaf; perverse sheaf; microlocal sheaf theory; ind-sheaf; $2$-limit; stack
UR - http://eudml.org/doc/272464
ER -

References

top
  1. [1] E. Andronikof – « A microlocal version of the Riemann-Hilbert correspondence », Topol. Meth. Nonlin. Anal.4 (1994), p. 417–425. Zbl0839.32004MR1350980
  2. [2] —, Microlocalisation tempérée, Mém. Soc. Math. France (N.S.), vol. 57, Société Mathématique de France, Paris, 1994. 
  3. [3] A. Beilinson, J. Bernstein & P. Deligne – Faisceaux pervers, analyse et topologie sur les espaces singuliers, Astérisque, vol. 100, Soc. Math. France, 1982. Zbl0536.14011MR751966
  4. [4] A. D’Agnolo – « On the microlocal cut-off of sheaves », Topol. Meth. Nonlin. Anal.8 (1996), p. 161–167. Zbl0901.58070MR1485761
  5. [5] P. Gabriel – « Des catégories abéliennes », Bull. Soc. Math. France90 (1962), p. 323–448. Zbl0201.35602MR232821
  6. [6] S. Gelfand, R. MacPherson & K. Vilonen – « Microlocal Perverse Sheaves », anounced. 
  7. [7] M. Kashiwara – « The Riemann-Hilbert problem for holonomic systems », Publ. RIMS, Kyoto Univ. 20 (1984), p. 319–365. Zbl0566.32023MR743382
  8. [8] —, « Quantization of contact manifolds », Publ. RIMS, Kyoto Univ. 32 (1996), p. 1–7. Zbl0874.53027MR1384750
  9. [9] —, « Ind-Microlocalization », written by F.Ivorra and I.Waschkies following a manuscript of M.Kashiwara, to appear in Progress in Math., Birkhäuser. 
  10. [10] M. Kashiwara & T. Kawai – « On holonomic systems of microdifferential equations III », Publ. RIMS, Kyoto Univ. 17 (1981), p. 813–979. Zbl0505.58033MR650216
  11. [11] M. Kashiwara & P. Schapira – Sheaves on Manifolds, Springer, 1990. Zbl0709.18001MR1074006
  12. [12] —, Ind-sheaves, Astérisque, vol. 271, Société Mathématique de France, Paris, 2001. Zbl0993.32009
  13. [13] S. MacLane – Categories for the working mathematician, 2nd éd., Springer, 1998. Zbl0705.18001MR1712872
  14. [14] M. Sato, T. Kawai & M. Kashiwara – « Hyperfunctions and pseudo-differential equations », Proceedings Katata 1971 (H. Komatsu, éd.), Lecture Notes in Math., vol. 287, Springer, 1973, p. 265–529. Zbl0277.46039MR420735
  15. [15] R. Street – « Categorical structures », Handbook of algebra, vol. 1, North-Holland, 1996, p. 529–577. Zbl0854.18001MR1421811
  16. [16] R. Thomason – « Homotopy colimits in the category of small categories », Proc. Camb. Phil. Soc.85 (1979), p. 91–109. Zbl0392.18001MR510404

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.