On the Pythagoras numbers of real analytic set germs

José F. Fernando; Jesús M. Ruiz

Bulletin de la Société Mathématique de France (2005)

  • Volume: 133, Issue: 3, page 349-362
  • ISSN: 0037-9484

Abstract

top
We show that (i) the Pythagoras number of a real analytic set germ is the supremum of the Pythagoras numbers of the curve germs it contains, and (ii) every real analytic curve germ is contained in a real analytic surface germ with the same Pythagoras number (or Pythagoras number 2 if the curve is Pythagorean). This gives new examples and counterexamples concerning sums of squares and positive semidefinite analytic function germs.

How to cite

top

Fernando, José F., and Ruiz, Jesús M.. "On the Pythagoras numbers of real analytic set germs." Bulletin de la Société Mathématique de France 133.3 (2005): 349-362. <http://eudml.org/doc/272491>.

@article{Fernando2005,
abstract = {We show that (i) the Pythagoras number of a real analytic set germ is the supremum of the Pythagoras numbers of the curve germs it contains, and (ii) every real analytic curve germ is contained in a real analytic surface germ with the same Pythagoras number (or Pythagoras number $2$ if the curve is Pythagorean). This gives new examples and counterexamples concerning sums of squares and positive semidefinite analytic function germs.},
author = {Fernando, José F., Ruiz, Jesús M.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {pythagoras number; sum of squares; m. Artin’s approximation},
language = {eng},
number = {3},
pages = {349-362},
publisher = {Société mathématique de France},
title = {On the Pythagoras numbers of real analytic set germs},
url = {http://eudml.org/doc/272491},
volume = {133},
year = {2005},
}

TY - JOUR
AU - Fernando, José F.
AU - Ruiz, Jesús M.
TI - On the Pythagoras numbers of real analytic set germs
JO - Bulletin de la Société Mathématique de France
PY - 2005
PB - Société mathématique de France
VL - 133
IS - 3
SP - 349
EP - 362
AB - We show that (i) the Pythagoras number of a real analytic set germ is the supremum of the Pythagoras numbers of the curve germs it contains, and (ii) every real analytic curve germ is contained in a real analytic surface germ with the same Pythagoras number (or Pythagoras number $2$ if the curve is Pythagorean). This gives new examples and counterexamples concerning sums of squares and positive semidefinite analytic function germs.
LA - eng
KW - pythagoras number; sum of squares; m. Artin’s approximation
UR - http://eudml.org/doc/272491
ER -

References

top
  1. [1] S. Abhyankar – Resolution of singularities of embedded algebraic surfaces, 2nd, enlarged éd., Springer Monographs in Math., Springer Verlag, Berlin-Heidelberg-NewYork, 1998. Zbl0914.14006MR1617523
  2. [2] C. Andradas, L. Bröcker & J. Ruiz – Constructible Sets in Real Geometry, Ergeb. Math. Grenzgeb., vol. 33, Springer Verlag, Berlin-Heidelberg-NewYork, 1996. Zbl0873.14044MR1393194
  3. [3] J. Becker & R. Gurjar – « Curves with large tangent space », 242 (1975), p. 285–296. Zbl0398.32005MR496808
  4. [4] J. Bochnak, M. Coste & M.-F. Roy – Real Algebraic Geometry, Ergeb. Math. Grenzgeb., vol. 36, Springer Verlag, Berlin-Heidelberg-NewYork, 1998. Zbl0912.14023MR1659509
  5. [5] N. Bourbaki – Commutative Algebra, Hermann, Paris, 1972. MR360549
  6. [6] A. Campillo & J. Ruiz – « Some Remarks on Pythagorean Real Curve Germs », 128 (1990), p. 271–275. Zbl0718.14027MR1036389
  7. [7] M. Choi, Z. Dai, T. Lam & B. Reznick – « The Pythagoras number of some affine algebras and local algebras », 336 (1982), p. 45–82. Zbl0499.12018MR671321
  8. [8] J. Fernando – « On the Pythagoras numbers of real analytic rings », 243 (2001), p. 321–338. Zbl1065.14070MR1851666
  9. [9] —, « Sums of squares in real analytic rings », 354 (2002), p. 1909–1919. Zbl0987.13017MR1881023
  10. [10] —, « Analytic surface germs with minimal Pythagoras number », Math. Z.244 (2003), p. 725–752. Zbl1052.14069MR2000457
  11. [11] J. Fernando & R. Quarez – « Some remarks on the computation of Pythagoras numbers of real irreducible algebroid curves through Gram matrices », 274 (2004), p. 64–67. Zbl1068.14031MR2040862
  12. [12] J. Fernando & J. Ruiz – « Positive semidefinite germs on the cone », 205 (2002), p. 109–118. Zbl1062.32008MR1921079
  13. [13] H. Hironaka – « Resolution of singularities of an algebraic variety over a field of characteristic zero », 79 (1964), p. 109–123, 205–326. Zbl0122.38603MR199184
  14. [14] T. de Jong & G. Pfister – Local Analytic Geometry, basic theory and applications, Advanced Lectures in Mathematics, Vieweg Verlag, Braunschweig-Wiesbaden, 2000. Zbl0959.32011MR1760953
  15. [15] H. Kurke, T. Mostowski, G. Pfister, D. Popescu & M. Roczen – Die Approximationseigenschaft lokaler Ringe, vol. 634, Springer Verlag, 1978. Zbl0401.13013MR485851
  16. [16] J. Merrien – « Un théorème des zéros pour les idéaux de séries formelles à coefficients réels », C. R. Acad. Sci. Paris Sér. A-B276 (1973), p. 1055–1058. Zbl0252.14001MR316429
  17. [17] J. Ortega – « On the Pythagoras number of a real irreducible algebroid curve », 289 (1991), p. 111–123. Zbl0743.14041MR1087240
  18. [18] R. Quarez – « Pythagoras numbers of real algebroid curves and Gram matrices », 238 (2001), p. 139–158. Zbl1044.14031MR1822187
  19. [19] J. Ruiz – The basic theory of power series, Advanced Lectures in Mathematics, Vieweg Verlag, Braunschweig-Wiesbaden, 1993. MR1234937
  20. [20] —, « Sums of two squares in analytic rings », 230 (1999), p. 317–328. Zbl0930.32007MR1676722
  21. [21] C. Scheiderer – « Sums of squares of regular functions on real algebraic varieties », 352 (1999), p. 1039–1069. Zbl0941.14024MR1675230
  22. [22] —, « On sums of squares in local rings », 540 (2001), p. 205–227. Zbl0991.13014MR1868603
  23. [23] J.-C. Tougeron – Idéaux de fonctions différentiables, Ergeb. Math. Grenzgeb., vol. 71, Springer Verlag, Berlin-Heidelberg-NewYork, 1972. Zbl0251.58001
  24. [24] O. Zariski & P. Samuel – Commutative Algebra, II, vol. 29, Springer Verlag, Berlin-Heidelberg-NewYork, 1980. Zbl0322.13001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.