On the Pythagoras numbers of real analytic set germs
José F. Fernando; Jesús M. Ruiz
Bulletin de la Société Mathématique de France (2005)
- Volume: 133, Issue: 3, page 349-362
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topFernando, José F., and Ruiz, Jesús M.. "On the Pythagoras numbers of real analytic set germs." Bulletin de la Société Mathématique de France 133.3 (2005): 349-362. <http://eudml.org/doc/272491>.
@article{Fernando2005,
abstract = {We show that (i) the Pythagoras number of a real analytic set germ is the supremum of the Pythagoras numbers of the curve germs it contains, and (ii) every real analytic curve germ is contained in a real analytic surface germ with the same Pythagoras number (or Pythagoras number $2$ if the curve is Pythagorean). This gives new examples and counterexamples concerning sums of squares and positive semidefinite analytic function germs.},
author = {Fernando, José F., Ruiz, Jesús M.},
journal = {Bulletin de la Société Mathématique de France},
keywords = {pythagoras number; sum of squares; m. Artin’s approximation},
language = {eng},
number = {3},
pages = {349-362},
publisher = {Société mathématique de France},
title = {On the Pythagoras numbers of real analytic set germs},
url = {http://eudml.org/doc/272491},
volume = {133},
year = {2005},
}
TY - JOUR
AU - Fernando, José F.
AU - Ruiz, Jesús M.
TI - On the Pythagoras numbers of real analytic set germs
JO - Bulletin de la Société Mathématique de France
PY - 2005
PB - Société mathématique de France
VL - 133
IS - 3
SP - 349
EP - 362
AB - We show that (i) the Pythagoras number of a real analytic set germ is the supremum of the Pythagoras numbers of the curve germs it contains, and (ii) every real analytic curve germ is contained in a real analytic surface germ with the same Pythagoras number (or Pythagoras number $2$ if the curve is Pythagorean). This gives new examples and counterexamples concerning sums of squares and positive semidefinite analytic function germs.
LA - eng
KW - pythagoras number; sum of squares; m. Artin’s approximation
UR - http://eudml.org/doc/272491
ER -
References
top- [1] S. Abhyankar – Resolution of singularities of embedded algebraic surfaces, 2nd, enlarged éd., Springer Monographs in Math., Springer Verlag, Berlin-Heidelberg-NewYork, 1998. Zbl0914.14006MR1617523
- [2] C. Andradas, L. Bröcker & J. Ruiz – Constructible Sets in Real Geometry, Ergeb. Math. Grenzgeb., vol. 33, Springer Verlag, Berlin-Heidelberg-NewYork, 1996. Zbl0873.14044MR1393194
- [3] J. Becker & R. Gurjar – « Curves with large tangent space », 242 (1975), p. 285–296. Zbl0398.32005MR496808
- [4] J. Bochnak, M. Coste & M.-F. Roy – Real Algebraic Geometry, Ergeb. Math. Grenzgeb., vol. 36, Springer Verlag, Berlin-Heidelberg-NewYork, 1998. Zbl0912.14023MR1659509
- [5] N. Bourbaki – Commutative Algebra, Hermann, Paris, 1972. MR360549
- [6] A. Campillo & J. Ruiz – « Some Remarks on Pythagorean Real Curve Germs », 128 (1990), p. 271–275. Zbl0718.14027MR1036389
- [7] M. Choi, Z. Dai, T. Lam & B. Reznick – « The Pythagoras number of some affine algebras and local algebras », 336 (1982), p. 45–82. Zbl0499.12018MR671321
- [8] J. Fernando – « On the Pythagoras numbers of real analytic rings », 243 (2001), p. 321–338. Zbl1065.14070MR1851666
- [9] —, « Sums of squares in real analytic rings », 354 (2002), p. 1909–1919. Zbl0987.13017MR1881023
- [10] —, « Analytic surface germs with minimal Pythagoras number », Math. Z.244 (2003), p. 725–752. Zbl1052.14069MR2000457
- [11] J. Fernando & R. Quarez – « Some remarks on the computation of Pythagoras numbers of real irreducible algebroid curves through Gram matrices », 274 (2004), p. 64–67. Zbl1068.14031MR2040862
- [12] J. Fernando & J. Ruiz – « Positive semidefinite germs on the cone », 205 (2002), p. 109–118. Zbl1062.32008MR1921079
- [13] H. Hironaka – « Resolution of singularities of an algebraic variety over a field of characteristic zero », 79 (1964), p. 109–123, 205–326. Zbl0122.38603MR199184
- [14] T. de Jong & G. Pfister – Local Analytic Geometry, basic theory and applications, Advanced Lectures in Mathematics, Vieweg Verlag, Braunschweig-Wiesbaden, 2000. Zbl0959.32011MR1760953
- [15] H. Kurke, T. Mostowski, G. Pfister, D. Popescu & M. Roczen – Die Approximationseigenschaft lokaler Ringe, vol. 634, Springer Verlag, 1978. Zbl0401.13013MR485851
- [16] J. Merrien – « Un théorème des zéros pour les idéaux de séries formelles à coefficients réels », C. R. Acad. Sci. Paris Sér. A-B276 (1973), p. 1055–1058. Zbl0252.14001MR316429
- [17] J. Ortega – « On the Pythagoras number of a real irreducible algebroid curve », 289 (1991), p. 111–123. Zbl0743.14041MR1087240
- [18] R. Quarez – « Pythagoras numbers of real algebroid curves and Gram matrices », 238 (2001), p. 139–158. Zbl1044.14031MR1822187
- [19] J. Ruiz – The basic theory of power series, Advanced Lectures in Mathematics, Vieweg Verlag, Braunschweig-Wiesbaden, 1993. MR1234937
- [20] —, « Sums of two squares in analytic rings », 230 (1999), p. 317–328. Zbl0930.32007MR1676722
- [21] C. Scheiderer – « Sums of squares of regular functions on real algebraic varieties », 352 (1999), p. 1039–1069. Zbl0941.14024MR1675230
- [22] —, « On sums of squares in local rings », 540 (2001), p. 205–227. Zbl0991.13014MR1868603
- [23] J.-C. Tougeron – Idéaux de fonctions différentiables, Ergeb. Math. Grenzgeb., vol. 71, Springer Verlag, Berlin-Heidelberg-NewYork, 1972. Zbl0251.58001
- [24] O. Zariski & P. Samuel – Commutative Algebra, II, vol. 29, Springer Verlag, Berlin-Heidelberg-NewYork, 1980. Zbl0322.13001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.