Decay of correlations for nonuniformly expanding systems
Bulletin de la Société Mathématique de France (2006)
- Volume: 134, Issue: 1, page 1-31
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topGouëzel, Sébastien. "Decay of correlations for nonuniformly expanding systems." Bulletin de la Société Mathématique de France 134.1 (2006): 1-31. <http://eudml.org/doc/272509>.
@article{Gouëzel2006,
abstract = {We estimate the speed of decay of correlations for general nonuniformly expanding dynamical systems, using estimates on the time the system takes to become really expanding. Our method can deal with fast decays, such as exponential or stretched exponential. We prove in particular that the correlations of the Alves-Viana map decay in $O(\rm e ^\{-c \sqrt\{n\}\})$.},
author = {Gouëzel, Sébastien},
journal = {Bulletin de la Société Mathématique de France},
keywords = {decay of correlations; Young tower; non uniformly expanding maps},
language = {eng},
number = {1},
pages = {1-31},
publisher = {Société mathématique de France},
title = {Decay of correlations for nonuniformly expanding systems},
url = {http://eudml.org/doc/272509},
volume = {134},
year = {2006},
}
TY - JOUR
AU - Gouëzel, Sébastien
TI - Decay of correlations for nonuniformly expanding systems
JO - Bulletin de la Société Mathématique de France
PY - 2006
PB - Société mathématique de France
VL - 134
IS - 1
SP - 1
EP - 31
AB - We estimate the speed of decay of correlations for general nonuniformly expanding dynamical systems, using estimates on the time the system takes to become really expanding. Our method can deal with fast decays, such as exponential or stretched exponential. We prove in particular that the correlations of the Alves-Viana map decay in $O(\rm e ^{-c \sqrt{n}})$.
LA - eng
KW - decay of correlations; Young tower; non uniformly expanding maps
UR - http://eudml.org/doc/272509
ER -
References
top- [1] J. Aaronson – An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, vol. 50, American Mathematical Society, 1997. Zbl0882.28013MR1450400
- [2] J. F. Alves – « SRB measures for non-hyperbolic systems with multidimensional expansion », Ann. Sci. École Norm. Sup.33 (2000), p. 1–32. Zbl0955.37012MR1743717
- [3] J. F. Alves & V. Araújo – « Random perturbations of nonuniformly expanding maps », Astérisque286 (2003), p. 25–62. Zbl1043.37016MR2052296
- [4] —, « Hyperbolic times: frequency versus integrability », Ergodic Theory Dynam. Systems24 (2004), p. 329–346. Zbl1069.37020MR2054046
- [5] J. F. Alves, C. Bonatti & M. Viana – « SRB measures for partially hyperbolic systems whose central direction is mostly expanding », Invent. Math.140 (2000), p. 351–398. Zbl0962.37012MR1757000
- [6] J. F. Alves, S. Luzzatto & V. Pinheiro – « Markov structures and decay of correlations for non-uniformly expanding dynamical systems », Preprint, 2002. Zbl1134.37326MR2172861
- [7] J. F. Alves & M. Viana – « Statistical stability for robust classes of maps with non-uniform expansion », Ergodic Theory Dynam. Systems22 (2002), p. 1–32. Zbl1067.37034MR1889563
- [8] V. Baladi & S. Gouëzel – « Stretched exponential bounds for the correlations of the Viana-Alves skew product », www.math.jussieu.fr/~baladi, to appear, Proceedings Workshop on Dynamics and Randomness, Universidad de Chile, Santiago de Chile, 2002. MR1858537
- [9] —, « A note on stretched exponential decay of correlations for the Viana-Alves map », arXiv.org/math.DS/0311189, 2003.
- [10] J. Buzzi, O. Sester & M. Tsujii – « Weakly expanding skew-products of quadratic maps », Ergodic Theory Dynam. Systems23 (2003), p. 1401–1414. Zbl1037.37014MR2018605
- [11] S. Gouëzel – « Vitesse de décorrélation et théorèmes limites pour les applications non uniformément dilatantes », Thèse, Université Paris Sud, 2004.
- [12] M. Viana – « Multidimensional nonhyperbolic attractors », Publ. Math. IHÉS85 (1997), p. 63–96. Zbl1037.37016MR1471866
- [13] L.-S. Young – « Statistical properties of dynamical systems with some hyperbolicity », Ann. of Math.147 (1998), p. 585–650. Zbl0945.37009MR1637655
- [14] —, « Recurrence times and rates of mixing », Israel J. Math.110 (1999), p. 153–188. Zbl0983.37005MR1750438
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.