Some remarks on the local class field theory of Serre and Hazewinkel
Bulletin de la Société Mathématique de France (2013)
- Volume: 141, Issue: 1, page 1-24
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topSuzuki, Takashi. "Some remarks on the local class field theory of Serre and Hazewinkel." Bulletin de la Société Mathématique de France 141.1 (2013): 1-24. <http://eudml.org/doc/272532>.
@article{Suzuki2013,
abstract = {We give a new approach for the local class field theory of Serre and Hazewinkel. We also discuss two-dimensional local class field theory in this framework.},
author = {Suzuki, Takashi},
journal = {Bulletin de la Société Mathématique de France},
keywords = {local class field theory; K-theory},
language = {eng},
number = {1},
pages = {1-24},
publisher = {Société mathématique de France},
title = {Some remarks on the local class field theory of Serre and Hazewinkel},
url = {http://eudml.org/doc/272532},
volume = {141},
year = {2013},
}
TY - JOUR
AU - Suzuki, Takashi
TI - Some remarks on the local class field theory of Serre and Hazewinkel
JO - Bulletin de la Société Mathématique de France
PY - 2013
PB - Société mathématique de France
VL - 141
IS - 1
SP - 1
EP - 24
AB - We give a new approach for the local class field theory of Serre and Hazewinkel. We also discuss two-dimensional local class field theory in this framework.
LA - eng
KW - local class field theory; K-theory
UR - http://eudml.org/doc/272532
ER -
References
top- [1] H. Bass (éd.) – Algebraic -theory. I: Higher -theories, Lecture Notes in Math., vol. 341, Springer, 1973. MR325307
- [2] A. Beilinson, S. Bloch, P. Deligne & H. Esnault – « Periods for irregular connections on curves », preprint 2005. MR1988970
- [3] S. Bloch & H. Esnault – « Gauss-Manin determinants for rank 1 irregular connections on curves », Math. Ann.321 (2001), p. 15–87. Zbl1040.14006MR1857369
- [4] P. Colmez & J-P. Serre (éds.) – Correspondance Grothendieck-Serre, Documents Mathématiques (Paris), 2, Soc. Math. France, 2001. MR1942134
- [5] C. Contou-Carrère – « Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré », C. R. Acad. Sci. Paris Sér. I Math.318 (1994), p. 743–746. MR1272340
- [6] C. E. Contou-Carrère – « Corps de classes local géométrique relatif », C. R. Acad. Sci. Paris Sér. I Math.292 (1981), p. 481–484. Zbl0506.14043MR612541
- [7] M. Demazure & P. Gabriel – Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris, 1970 (Appendix: M. Hazewinkel, Corps de classes local). Zbl0203.23401MR302656
- [8] I. Fesenko & M. Kurihara (éds.) – Invitation to higher local fields, Geometry & Topology Monographs, vol. 3, Geometry & Topology Publications, Coventry, 2000, Papers from the conference held in Münster, August 29–September 5, 1999. MR1804915
- [9] K. Iwasawa – Local class field theory, Oxford Science Publications, The Clarendon Press Oxford Univ. Press, 1986, Oxford Mathematical Monographs. MR863740
- [10] J. S. Milne – Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton Univ. Press, 1980. MR559531
- [11] —, Arithmetic duality theorems, second éd., BookSurge, LLC, Charleston, SC, 2006. MR2261462
- [12] J-P. Serre – « Groupes proalgébriques », Publ. Math. I.H.É.S. 7 (1960).
- [13] —, « Sur les corps locaux à corps résiduel algébriquement clos », Bull. Soc. Math. France89 (1961), p. 105–154. Zbl0166.31103MR142534
- [14] —, Algebraic groups and class fields, Graduate Texts in Math., vol. 117, Springer, 1988. MR918564
- [15] —, Galois cohomology, English éd., Springer Monographs in Math., Springer, 2002. MR1867431
- [16] T. Suzuki & M. Yoshida – « Fontaine’s property (P) at the maximal ramification break », preprint, arXiv:1012.2935v1, 2010. MR3154381
- [17] —, « A refinement of the local class field theory of Serre and Hazewinkel », in Algebraic number theory and related topics 2010, RIMS Kôkyûroku Bessatsu, B32, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012, p. 163–191. Zbl1282.11156MR2986923
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.