Some remarks on the local class field theory of Serre and Hazewinkel

Takashi Suzuki

Bulletin de la Société Mathématique de France (2013)

  • Volume: 141, Issue: 1, page 1-24
  • ISSN: 0037-9484

Abstract

top
We give a new approach for the local class field theory of Serre and Hazewinkel. We also discuss two-dimensional local class field theory in this framework.

How to cite

top

Suzuki, Takashi. "Some remarks on the local class field theory of Serre and Hazewinkel." Bulletin de la Société Mathématique de France 141.1 (2013): 1-24. <http://eudml.org/doc/272532>.

@article{Suzuki2013,
abstract = {We give a new approach for the local class field theory of Serre and Hazewinkel. We also discuss two-dimensional local class field theory in this framework.},
author = {Suzuki, Takashi},
journal = {Bulletin de la Société Mathématique de France},
keywords = {local class field theory; K-theory},
language = {eng},
number = {1},
pages = {1-24},
publisher = {Société mathématique de France},
title = {Some remarks on the local class field theory of Serre and Hazewinkel},
url = {http://eudml.org/doc/272532},
volume = {141},
year = {2013},
}

TY - JOUR
AU - Suzuki, Takashi
TI - Some remarks on the local class field theory of Serre and Hazewinkel
JO - Bulletin de la Société Mathématique de France
PY - 2013
PB - Société mathématique de France
VL - 141
IS - 1
SP - 1
EP - 24
AB - We give a new approach for the local class field theory of Serre and Hazewinkel. We also discuss two-dimensional local class field theory in this framework.
LA - eng
KW - local class field theory; K-theory
UR - http://eudml.org/doc/272532
ER -

References

top
  1. [1] H. Bass (éd.) – Algebraic K -theory. I: Higher K -theories, Lecture Notes in Math., vol. 341, Springer, 1973. MR325307
  2. [2] A. Beilinson, S. Bloch, P. Deligne & H. Esnault – « Periods for irregular connections on curves », preprint 2005. MR1988970
  3. [3] S. Bloch & H. Esnault – « Gauss-Manin determinants for rank 1 irregular connections on curves », Math. Ann.321 (2001), p. 15–87. Zbl1040.14006MR1857369
  4. [4] P. Colmez & J-P. Serre (éds.) – Correspondance Grothendieck-Serre, Documents Mathématiques (Paris), 2, Soc. Math. France, 2001. MR1942134
  5. [5] C. Contou-Carrère – « Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré », C. R. Acad. Sci. Paris Sér. I Math.318 (1994), p. 743–746. MR1272340
  6. [6] C. E. Contou-Carrère – « Corps de classes local géométrique relatif », C. R. Acad. Sci. Paris Sér. I Math.292 (1981), p. 481–484. Zbl0506.14043MR612541
  7. [7] M. Demazure & P. Gabriel – Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris, 1970 (Appendix: M. Hazewinkel, Corps de classes local). Zbl0203.23401MR302656
  8. [8] I. Fesenko & M. Kurihara (éds.) – Invitation to higher local fields, Geometry & Topology Monographs, vol. 3, Geometry & Topology Publications, Coventry, 2000, Papers from the conference held in Münster, August 29–September 5, 1999. MR1804915
  9. [9] K. Iwasawa – Local class field theory, Oxford Science Publications, The Clarendon Press Oxford Univ. Press, 1986, Oxford Mathematical Monographs. MR863740
  10. [10] J. S. Milne – Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton Univ. Press, 1980. MR559531
  11. [11] —, Arithmetic duality theorems, second éd., BookSurge, LLC, Charleston, SC, 2006. MR2261462
  12. [12] J-P. Serre – « Groupes proalgébriques », Publ. Math. I.H.É.S. 7 (1960). 
  13. [13] —, « Sur les corps locaux à corps résiduel algébriquement clos », Bull. Soc. Math. France89 (1961), p. 105–154. Zbl0166.31103MR142534
  14. [14] —, Algebraic groups and class fields, Graduate Texts in Math., vol. 117, Springer, 1988. MR918564
  15. [15] —, Galois cohomology, English éd., Springer Monographs in Math., Springer, 2002. MR1867431
  16. [16] T. Suzuki & M. Yoshida – « Fontaine’s property (P m ) at the maximal ramification break », preprint, arXiv:1012.2935v1, 2010. MR3154381
  17. [17] —, « A refinement of the local class field theory of Serre and Hazewinkel », in Algebraic number theory and related topics 2010, RIMS Kôkyûroku Bessatsu, B32, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012, p. 163–191. Zbl1282.11156MR2986923

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.