Abelian local p-class field theory.
Soit un corps complet pour une valuation discrète, de corps résiduel . Lorsque est fini, la structure de a été déterminée par C.C. Moore, J.E. Carroll et A.S. Merkurjev. On généralise ici leurs résultats au cas où est parfait de caractéristique positive . Les résultats principaux sont : est -divisible pour assez grand (explicite); le groupe de Milnor est discret, explicitement déterminé ; n’a pas de torsion première à , et sa -torsion est explicitement déterminée. On obtient...
For a typical example of a complete discrete valuation field of type II in the sense of [12], we determine the graded quotients for all . In the Appendix, we describe the Milnor -groups of a certain local ring by using differential modules, which are related to the theory of syntomic cohomology.
We give a new approach for the local class field theory of Serre and Hazewinkel. We also discuss two-dimensional local class field theory in this framework.
The field-of-norms functor is applied to deduce an explicit formula for the Hilbert symbol in the mixed characteristic case from the explicit formula for the Witt symbol in characteristic in the context of higher local fields. Is is shown that a “very special case” of this construction gives Vostokov’s explicit formula.
L’auteur présente des applications élémentaires de la théorie du corps de classes de Kato et Parshin en dimensions 1 et 3 : calcul du conducteur d’une extension de Witt-Artin-Schreier d’un corps local de dimension 1, et étude des revêtements abéliens des surfaces.