Springer fiber components in the two columns case for types and are normal
Nicolas Perrin; Evgeny Smirnov
Bulletin de la Société Mathématique de France (2012)
- Volume: 140, Issue: 3, page 309-333
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topPerrin, Nicolas, and Smirnov, Evgeny. "Springer fiber components in the two columns case for types $A$ and $D$ are normal." Bulletin de la Société Mathématique de France 140.3 (2012): 309-333. <http://eudml.org/doc/272550>.
@article{Perrin2012,
abstract = {We study the singularities of the irreducible components of the Springer fiber over a nilpotent element $N$ with $N^2=0$ in a Lie algebra of type $A$ or $D$ (the so-called two columns case). We use Frobenius splitting techniques to prove that these irreducible components are normal, Cohen–Macaulay, and have rational singularities.},
author = {Perrin, Nicolas, Smirnov, Evgeny},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Springer fiber; Frobenius splitting; normality; rational resolution; rational singularities},
language = {eng},
number = {3},
pages = {309-333},
publisher = {Société mathématique de France},
title = {Springer fiber components in the two columns case for types $A$ and $D$ are normal},
url = {http://eudml.org/doc/272550},
volume = {140},
year = {2012},
}
TY - JOUR
AU - Perrin, Nicolas
AU - Smirnov, Evgeny
TI - Springer fiber components in the two columns case for types $A$ and $D$ are normal
JO - Bulletin de la Société Mathématique de France
PY - 2012
PB - Société mathématique de France
VL - 140
IS - 3
SP - 309
EP - 333
AB - We study the singularities of the irreducible components of the Springer fiber over a nilpotent element $N$ with $N^2=0$ in a Lie algebra of type $A$ or $D$ (the so-called two columns case). We use Frobenius splitting techniques to prove that these irreducible components are normal, Cohen–Macaulay, and have rational singularities.
LA - eng
KW - Springer fiber; Frobenius splitting; normality; rational resolution; rational singularities
UR - http://eudml.org/doc/272550
ER -
References
top- [1] N. Bourbaki – Groupes et algèbres de Lie, Hermann, 1954. Zbl0483.22001
- [2] M. Brion & S. Kumar – Frobenius splitting methods in geometry and representation theory, Progress in Math., vol. 231, Birkhäuser, 2005. Zbl1072.14066MR2107324
- [3] M. Demazure – « Désingularisation des variétés de Schubert généralisées », Ann. Sci. École Norm. Sup.7 (1974), p. 53–88. Zbl0312.14009MR354697
- [4] L. Fresse – « Composantes singulières des fibres de Springer dans le cas deux-colonnes », C. R. Math. Acad. Sci. Paris347 (2009), p. 631–636. Zbl1167.14035MR2532920
- [5] —, « Singular components of Springer fibers in the two-column case », Ann. Inst. Fourier (Grenoble) 59 (2009), p. 2429–2444. Zbl1191.14060MR2640925
- [6] L. Fresse & A. Melnikov – « On the singularity of the irreducible components of a Springer fiber in », Selecta Math. (N.S.) 16 (2010), p. 393–418. Zbl1209.14037MR2734337
- [7] W. Fulton – Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge Univ. Press, 1997. Zbl0878.14034MR1464693
- [8] F. Y. C. Fung – « On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory », Adv. Math.178 (2003), p. 244–276. Zbl1035.20004MR1994220
- [9] V. V. Gorbatsevitch, A. L. Onishchik & È. B. Vinberg (éds.) – Lie groups and Lie algebras, III, Encyclopaedia of Math. Sciences, vol. 41, Springer, 1994. Zbl0797.22001MR1349140
- [10] H. Grauert & O. Riemenschneider – « Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen », Invent. Math.11 (1970), p. 263–292. Zbl0202.07602MR302938
- [11] X. He & J. F. Thomsen – « Frobenius splitting and geometry of -Schubert varieties », Adv. Math.219 (2008), p. 1469–1512. Zbl1160.14035MR2458144
- [12] —, « On Frobenius splitting of orbit closures of spherical subgroups in flag varieties », preprint arXiv:1006.5175. Zbl1264.14066
- [13] S. Kumar – Kac-Moody groups, their flag varieties and representation theory, Progress in Math., vol. 204, Birkhäuser, 2002. Zbl1026.17030MR1923198
- [14] M. A. A. van Leeuwen – « A Robinson-Schensted algorithm in the geometry of flags for classical groups », Thèse, Rijksuniversiteit Utrecht, 1989.
- [15] N. Spaltenstein – Classes unipotentes et sous-groupes de Borel, Lecture Notes in Math., vol. 946, Springer, 1982. Zbl0486.20025MR672610
- [16] C. Stroppel & B. Webster – « 2-block Springer fibers: convolution algebras, coherent sheaves and embedded TQFT », preprint arXiv:0802.1943. Zbl1241.14009MR2914857
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.