Springer fiber components in the two columns case for types A and D are normal

Nicolas Perrin; Evgeny Smirnov

Bulletin de la Société Mathématique de France (2012)

  • Volume: 140, Issue: 3, page 309-333
  • ISSN: 0037-9484

Abstract

top
We study the singularities of the irreducible components of the Springer fiber over a nilpotent element N with N 2 = 0 in a Lie algebra of type A or D (the so-called two columns case). We use Frobenius splitting techniques to prove that these irreducible components are normal, Cohen–Macaulay, and have rational singularities.

How to cite

top

Perrin, Nicolas, and Smirnov, Evgeny. "Springer fiber components in the two columns case for types $A$ and $D$ are normal." Bulletin de la Société Mathématique de France 140.3 (2012): 309-333. <http://eudml.org/doc/272550>.

@article{Perrin2012,
abstract = {We study the singularities of the irreducible components of the Springer fiber over a nilpotent element $N$ with $N^2=0$ in a Lie algebra of type $A$ or $D$ (the so-called two columns case). We use Frobenius splitting techniques to prove that these irreducible components are normal, Cohen–Macaulay, and have rational singularities.},
author = {Perrin, Nicolas, Smirnov, Evgeny},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Springer fiber; Frobenius splitting; normality; rational resolution; rational singularities},
language = {eng},
number = {3},
pages = {309-333},
publisher = {Société mathématique de France},
title = {Springer fiber components in the two columns case for types $A$ and $D$ are normal},
url = {http://eudml.org/doc/272550},
volume = {140},
year = {2012},
}

TY - JOUR
AU - Perrin, Nicolas
AU - Smirnov, Evgeny
TI - Springer fiber components in the two columns case for types $A$ and $D$ are normal
JO - Bulletin de la Société Mathématique de France
PY - 2012
PB - Société mathématique de France
VL - 140
IS - 3
SP - 309
EP - 333
AB - We study the singularities of the irreducible components of the Springer fiber over a nilpotent element $N$ with $N^2=0$ in a Lie algebra of type $A$ or $D$ (the so-called two columns case). We use Frobenius splitting techniques to prove that these irreducible components are normal, Cohen–Macaulay, and have rational singularities.
LA - eng
KW - Springer fiber; Frobenius splitting; normality; rational resolution; rational singularities
UR - http://eudml.org/doc/272550
ER -

References

top
  1. [1] N. Bourbaki – Groupes et algèbres de Lie, Hermann, 1954. Zbl0483.22001
  2. [2] M. Brion & S. Kumar – Frobenius splitting methods in geometry and representation theory, Progress in Math., vol. 231, Birkhäuser, 2005. Zbl1072.14066MR2107324
  3. [3] M. Demazure – « Désingularisation des variétés de Schubert généralisées », Ann. Sci. École Norm. Sup.7 (1974), p. 53–88. Zbl0312.14009MR354697
  4. [4] L. Fresse – « Composantes singulières des fibres de Springer dans le cas deux-colonnes », C. R. Math. Acad. Sci. Paris347 (2009), p. 631–636. Zbl1167.14035MR2532920
  5. [5] —, « Singular components of Springer fibers in the two-column case », Ann. Inst. Fourier (Grenoble) 59 (2009), p. 2429–2444. Zbl1191.14060MR2640925
  6. [6] L. Fresse & A. Melnikov – « On the singularity of the irreducible components of a Springer fiber in 𝔰𝔩 n », Selecta Math. (N.S.) 16 (2010), p. 393–418. Zbl1209.14037MR2734337
  7. [7] W. Fulton – Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge Univ. Press, 1997. Zbl0878.14034MR1464693
  8. [8] F. Y. C. Fung – « On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory », Adv. Math.178 (2003), p. 244–276. Zbl1035.20004MR1994220
  9. [9] V. V. Gorbatsevitch, A. L. Onishchik & È. B. Vinberg (éds.) – Lie groups and Lie algebras, III, Encyclopaedia of Math. Sciences, vol. 41, Springer, 1994. Zbl0797.22001MR1349140
  10. [10] H. Grauert & O. Riemenschneider – « Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen », Invent. Math.11 (1970), p. 263–292. Zbl0202.07602MR302938
  11. [11] X. He & J. F. Thomsen – « Frobenius splitting and geometry of G -Schubert varieties », Adv. Math.219 (2008), p. 1469–1512. Zbl1160.14035MR2458144
  12. [12] —, « On Frobenius splitting of orbit closures of spherical subgroups in flag varieties », preprint arXiv:1006.5175. Zbl1264.14066
  13. [13] S. Kumar – Kac-Moody groups, their flag varieties and representation theory, Progress in Math., vol. 204, Birkhäuser, 2002. Zbl1026.17030MR1923198
  14. [14] M. A. A. van Leeuwen – « A Robinson-Schensted algorithm in the geometry of flags for classical groups », Thèse, Rijksuniversiteit Utrecht, 1989. 
  15. [15] N. Spaltenstein – Classes unipotentes et sous-groupes de Borel, Lecture Notes in Math., vol. 946, Springer, 1982. Zbl0486.20025MR672610
  16. [16] C. Stroppel & B. Webster – « 2-block Springer fibers: convolution algebras, coherent sheaves and embedded TQFT », preprint arXiv:0802.1943. Zbl1241.14009MR2914857

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.