Degeneracy of holomorphic maps via orbifolds

Erwan Rousseau

Bulletin de la Société Mathématique de France (2012)

  • Volume: 140, Issue: 4, page 459-484
  • ISSN: 0037-9484

Abstract

top
We use orbifold structures to deduce degeneracy statements for holomorphic maps into logarithmic surfaces. We improve former results in the smooth case and generalize them to singular pairs. In particular, we give applications on nodal surfaces and complements of singular plane curves.

How to cite

top

Rousseau, Erwan. "Degeneracy of holomorphic maps via orbifolds." Bulletin de la Société Mathématique de France 140.4 (2012): 459-484. <http://eudml.org/doc/272552>.

@article{Rousseau2012,
abstract = {We use orbifold structures to deduce degeneracy statements for holomorphic maps into logarithmic surfaces. We improve former results in the smooth case and generalize them to singular pairs. In particular, we give applications on nodal surfaces and complements of singular plane curves.},
author = {Rousseau, Erwan},
journal = {Bulletin de la Société Mathématique de France},
keywords = {entire curves; Kobayashi hyperbolicity; orbifolds},
language = {eng},
number = {4},
pages = {459-484},
publisher = {Société mathématique de France},
title = {Degeneracy of holomorphic maps via orbifolds},
url = {http://eudml.org/doc/272552},
volume = {140},
year = {2012},
}

TY - JOUR
AU - Rousseau, Erwan
TI - Degeneracy of holomorphic maps via orbifolds
JO - Bulletin de la Société Mathématique de France
PY - 2012
PB - Société mathématique de France
VL - 140
IS - 4
SP - 459
EP - 484
AB - We use orbifold structures to deduce degeneracy statements for holomorphic maps into logarithmic surfaces. We improve former results in the smooth case and generalize them to singular pairs. In particular, we give applications on nodal surfaces and complements of singular plane curves.
LA - eng
KW - entire curves; Kobayashi hyperbolicity; orbifolds
UR - http://eudml.org/doc/272552
ER -

References

top
  1. [1] D. Abramovich & A. Vistoli – « Compactifying the space of stable maps », J. Amer. Math. Soc.15 (2002), p. 27–75. Zbl0991.14007MR1862797
  2. [2] A. Adem, J. Leida & Y. Ruan – Orbifolds and stringy topology, Cambridge Tracts in Mathematics, vol. 171, Cambridge Univ. Press, 2007. Zbl1157.57001MR2359514
  3. [3] F. Bogomolov – « Families of curves on a surface of general type », Sov. Math. Dokl.18 (1977), p. 1294–1927. Zbl0415.14013
  4. [4] —, « Holomorphic tensors and vector bundles on projective varieties », Math. USSR Izvestija13 (1979), p. 499–555. Zbl0439.14002
  5. [5] F. Bogomolov & B. De Oliveira – « Hyperbolicity of nodal hypersurfaces », J. reine angew. Math. 596 (2006), p. 89–101. Zbl1108.14013MR2254806
  6. [6] F. Campana – « Orbifolds, special varieties and classification theory », Ann. Inst. Fourier (Grenoble) 54 (2004), p. 499–630. Zbl1062.14014MR2097416
  7. [7] —, « Orbifoldes spéciales et classification biméromorphe des variétés kählériennes compactes », preprint arXiv:0705.0737. Zbl1236.14039
  8. [8] F. Campana & M. Păun – « Variétés faiblement spéciales à courbes entières dégénérées », Compos. Math.143 (2007), p. 95–111. Zbl1120.32013MR2295198
  9. [9] F. Campana & J. Winkelmann – « A Brody theorem for orbifolds », Manuscripta Math.128 (2009), p. 195–212. Zbl1162.14012MR2471315
  10. [10] L. A. Campbell, A. Howard & T. Ochiai – « Moving holomorphic disks off analytic subsets », Proc. Amer. Soc.60 (1976), p. 106–108. Zbl0314.32014MR425186
  11. [11] L. A. Campbell & R. H. Ogawa – « On preserving the Kobayashi pseudodistance », Nagoya Math. J.57 (1975), p. 37–47. Zbl0312.32014MR372258
  12. [12] J. A. Carlson & M. Green – « A Picard theorem for holomorphic curves in the plane », Duke Math. J.43 (1976), p. 1–9. Zbl0333.32022MR397026
  13. [13] P. Deligne & G. D. Mostow – Commensurabilities among lattices in PU ( 1 , n ) , Annals of Math. Studies, vol. 132, Princeton Univ. Press, 1993. Zbl0826.22011MR1241644
  14. [14] G.-E. Dethloff & S. S.-Y. Lu – « Logarithmic jet bundles and applications », Osaka J. Math.38 (2001), p. 185–237. Zbl0982.32022MR1824906
  15. [15] H. M. Farkas & I. Kra – Riemann surfaces, Graduate Texts in Math., vol. 71, Springer, 1980. Zbl0475.30001MR583745
  16. [16] A. Ghigi & J. Kollár – « Kähler-Einstein metrics on orbifolds and Einstein metrics on spheres », Comment. Math. Helv.82 (2007), p. 877–902. Zbl1135.53031MR2341843
  17. [17] H. Grauert & U. Peternell – « Hyperbolicity of the complement of plane curves », Manuscripta Math.50 (1985), p. 429–441. Zbl0581.32031MR784151
  18. [18] M. Green & P. Griffiths – « Two applications of algebraic geometry to entire holomorphic mappings », in The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), Springer, 1980, p. 41–74. Zbl0508.32010MR609557
  19. [19] T. Kawasaki – « The Riemann-Roch theorem for complex V -manifolds », Osaka J. Math.16 (1979), p. 151–159. Zbl0405.32010MR527023
  20. [20] R. Kobayashi – « Uniformization of complex surfaces », in Kähler metric and moduli spaces, Adv. Stud. Pure Math., vol. 18, Academic Press, 1990, p. 313–394. Zbl0755.32024MR1145252
  21. [21] S. Kobayashi – Hyperbolic complex spaces, Grundl. Math. Wiss., vol. 318, Springer, 1998. Zbl0917.32019MR1635983
  22. [22] R. Lazarsfeld – Positivity in algebraic geometry. II, Ergebn. Math. Grenzg., vol. 49, Springer, 2004. Zbl1093.14500MR2095472
  23. [23] K. Matsuki – Introduction to the Mori program, Universitext, Springer, 2002. Zbl0988.14007MR1875410
  24. [24] K. Matsuki & M. Olsson – « Kawamata-Viehweg vanishing as Kodaira vanishing for stacks », Math. Res. Lett.12 (2005), p. 207–217. Zbl1080.14023MR2150877
  25. [25] M. McQuillan – « Diophantine approximations and foliations », Publ. Math. I.H.É.S. 87 (1998), p. 121–174. Zbl1006.32020MR1659270
  26. [26] —, « A toric extension of Faltings’ ‘Diophantine approximation on Abelian varieties’ », J. Differential Geom.57 (2001), p. 195–231. Zbl1070.11028MR1879225
  27. [27] —, « Rational criteria for hyperbolicity », preprint. 
  28. [28] G. Megyesi – « Generalisation of the Bogomolov-Miyaoka-Yau inequality to singular surfaces », Proc. London Math. Soc.78 (1999), p. 241–282. Zbl1006.14012MR1665244
  29. [29] I. Moerdijk & J. Mrčun – Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Math., vol. 91, Cambridge Univ. Press, 2003. Zbl1029.58012MR2012261
  30. [30] R. Nevanlinna – Analytic functions, Grundl. Math. Wiss., vol. 162, Springer, 1970. Zbl0199.12501MR279280
  31. [31] E. Rousseau – « Hyperbolicity of geometric orbifolds », Trans. Amer. Math. Soc.362 (2010), p. 3799–3826. Zbl1196.32018MR2601610
  32. [32] I. Satake – « The Gauss-Bonnet theorem for V -manifolds », J. Math. Soc. Japan9 (1957), p. 464–492. Zbl0080.37403MR95520
  33. [33] Y. T. Siu – « A proof of the generalized Schwarz lemma using the logarithmic derivative lemma », private communication to J.-P. Demailly, 1997. 
  34. [34] B. Toen – « Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford », K -Theory 18 (1999), p. 33–76. Zbl0946.14004MR1710187
  35. [35] H.-H. Tseng – « Orbifold quantum Riemann-Roch, Lefschetz and Serre », Geom. Topol.14 (2010), p. 1–81. Zbl1178.14058MR2578300
  36. [36] A. M. Uludağ – « Orbifolds and their uniformization », in Arithmetic and geometry around hypergeometric functions, Progr. Math., vol. 260, Birkhäuser, 2007, p. 373–406. Zbl1126.32020MR2306159
  37. [37] P. M. Wong – « Nevanlinna theory for holomorphic curves in projective varieties », preprint, 1999. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.