Degeneracy of holomorphic maps via orbifolds
Bulletin de la Société Mathématique de France (2012)
- Volume: 140, Issue: 4, page 459-484
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topRousseau, Erwan. "Degeneracy of holomorphic maps via orbifolds." Bulletin de la Société Mathématique de France 140.4 (2012): 459-484. <http://eudml.org/doc/272552>.
@article{Rousseau2012,
abstract = {We use orbifold structures to deduce degeneracy statements for holomorphic maps into logarithmic surfaces. We improve former results in the smooth case and generalize them to singular pairs. In particular, we give applications on nodal surfaces and complements of singular plane curves.},
author = {Rousseau, Erwan},
journal = {Bulletin de la Société Mathématique de France},
keywords = {entire curves; Kobayashi hyperbolicity; orbifolds},
language = {eng},
number = {4},
pages = {459-484},
publisher = {Société mathématique de France},
title = {Degeneracy of holomorphic maps via orbifolds},
url = {http://eudml.org/doc/272552},
volume = {140},
year = {2012},
}
TY - JOUR
AU - Rousseau, Erwan
TI - Degeneracy of holomorphic maps via orbifolds
JO - Bulletin de la Société Mathématique de France
PY - 2012
PB - Société mathématique de France
VL - 140
IS - 4
SP - 459
EP - 484
AB - We use orbifold structures to deduce degeneracy statements for holomorphic maps into logarithmic surfaces. We improve former results in the smooth case and generalize them to singular pairs. In particular, we give applications on nodal surfaces and complements of singular plane curves.
LA - eng
KW - entire curves; Kobayashi hyperbolicity; orbifolds
UR - http://eudml.org/doc/272552
ER -
References
top- [1] D. Abramovich & A. Vistoli – « Compactifying the space of stable maps », J. Amer. Math. Soc.15 (2002), p. 27–75. Zbl0991.14007MR1862797
- [2] A. Adem, J. Leida & Y. Ruan – Orbifolds and stringy topology, Cambridge Tracts in Mathematics, vol. 171, Cambridge Univ. Press, 2007. Zbl1157.57001MR2359514
- [3] F. Bogomolov – « Families of curves on a surface of general type », Sov. Math. Dokl.18 (1977), p. 1294–1927. Zbl0415.14013
- [4] —, « Holomorphic tensors and vector bundles on projective varieties », Math. USSR Izvestija13 (1979), p. 499–555. Zbl0439.14002
- [5] F. Bogomolov & B. De Oliveira – « Hyperbolicity of nodal hypersurfaces », J. reine angew. Math. 596 (2006), p. 89–101. Zbl1108.14013MR2254806
- [6] F. Campana – « Orbifolds, special varieties and classification theory », Ann. Inst. Fourier (Grenoble) 54 (2004), p. 499–630. Zbl1062.14014MR2097416
- [7] —, « Orbifoldes spéciales et classification biméromorphe des variétés kählériennes compactes », preprint arXiv:0705.0737. Zbl1236.14039
- [8] F. Campana & M. Păun – « Variétés faiblement spéciales à courbes entières dégénérées », Compos. Math.143 (2007), p. 95–111. Zbl1120.32013MR2295198
- [9] F. Campana & J. Winkelmann – « A Brody theorem for orbifolds », Manuscripta Math.128 (2009), p. 195–212. Zbl1162.14012MR2471315
- [10] L. A. Campbell, A. Howard & T. Ochiai – « Moving holomorphic disks off analytic subsets », Proc. Amer. Soc.60 (1976), p. 106–108. Zbl0314.32014MR425186
- [11] L. A. Campbell & R. H. Ogawa – « On preserving the Kobayashi pseudodistance », Nagoya Math. J.57 (1975), p. 37–47. Zbl0312.32014MR372258
- [12] J. A. Carlson & M. Green – « A Picard theorem for holomorphic curves in the plane », Duke Math. J.43 (1976), p. 1–9. Zbl0333.32022MR397026
- [13] P. Deligne & G. D. Mostow – Commensurabilities among lattices in , Annals of Math. Studies, vol. 132, Princeton Univ. Press, 1993. Zbl0826.22011MR1241644
- [14] G.-E. Dethloff & S. S.-Y. Lu – « Logarithmic jet bundles and applications », Osaka J. Math.38 (2001), p. 185–237. Zbl0982.32022MR1824906
- [15] H. M. Farkas & I. Kra – Riemann surfaces, Graduate Texts in Math., vol. 71, Springer, 1980. Zbl0475.30001MR583745
- [16] A. Ghigi & J. Kollár – « Kähler-Einstein metrics on orbifolds and Einstein metrics on spheres », Comment. Math. Helv.82 (2007), p. 877–902. Zbl1135.53031MR2341843
- [17] H. Grauert & U. Peternell – « Hyperbolicity of the complement of plane curves », Manuscripta Math.50 (1985), p. 429–441. Zbl0581.32031MR784151
- [18] M. Green & P. Griffiths – « Two applications of algebraic geometry to entire holomorphic mappings », in The Chern Symposium 1979 (Proc. Internat. Sympos., Berkeley, Calif., 1979), Springer, 1980, p. 41–74. Zbl0508.32010MR609557
- [19] T. Kawasaki – « The Riemann-Roch theorem for complex -manifolds », Osaka J. Math.16 (1979), p. 151–159. Zbl0405.32010MR527023
- [20] R. Kobayashi – « Uniformization of complex surfaces », in Kähler metric and moduli spaces, Adv. Stud. Pure Math., vol. 18, Academic Press, 1990, p. 313–394. Zbl0755.32024MR1145252
- [21] S. Kobayashi – Hyperbolic complex spaces, Grundl. Math. Wiss., vol. 318, Springer, 1998. Zbl0917.32019MR1635983
- [22] R. Lazarsfeld – Positivity in algebraic geometry. II, Ergebn. Math. Grenzg., vol. 49, Springer, 2004. Zbl1093.14500MR2095472
- [23] K. Matsuki – Introduction to the Mori program, Universitext, Springer, 2002. Zbl0988.14007MR1875410
- [24] K. Matsuki & M. Olsson – « Kawamata-Viehweg vanishing as Kodaira vanishing for stacks », Math. Res. Lett.12 (2005), p. 207–217. Zbl1080.14023MR2150877
- [25] M. McQuillan – « Diophantine approximations and foliations », Publ. Math. I.H.É.S. 87 (1998), p. 121–174. Zbl1006.32020MR1659270
- [26] —, « A toric extension of Faltings’ ‘Diophantine approximation on Abelian varieties’ », J. Differential Geom.57 (2001), p. 195–231. Zbl1070.11028MR1879225
- [27] —, « Rational criteria for hyperbolicity », preprint.
- [28] G. Megyesi – « Generalisation of the Bogomolov-Miyaoka-Yau inequality to singular surfaces », Proc. London Math. Soc.78 (1999), p. 241–282. Zbl1006.14012MR1665244
- [29] I. Moerdijk & J. Mrčun – Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Math., vol. 91, Cambridge Univ. Press, 2003. Zbl1029.58012MR2012261
- [30] R. Nevanlinna – Analytic functions, Grundl. Math. Wiss., vol. 162, Springer, 1970. Zbl0199.12501MR279280
- [31] E. Rousseau – « Hyperbolicity of geometric orbifolds », Trans. Amer. Math. Soc.362 (2010), p. 3799–3826. Zbl1196.32018MR2601610
- [32] I. Satake – « The Gauss-Bonnet theorem for -manifolds », J. Math. Soc. Japan9 (1957), p. 464–492. Zbl0080.37403MR95520
- [33] Y. T. Siu – « A proof of the generalized Schwarz lemma using the logarithmic derivative lemma », private communication to J.-P. Demailly, 1997.
- [34] B. Toen – « Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford », -Theory 18 (1999), p. 33–76. Zbl0946.14004MR1710187
- [35] H.-H. Tseng – « Orbifold quantum Riemann-Roch, Lefschetz and Serre », Geom. Topol.14 (2010), p. 1–81. Zbl1178.14058MR2578300
- [36] A. M. Uludağ – « Orbifolds and their uniformization », in Arithmetic and geometry around hypergeometric functions, Progr. Math., vol. 260, Birkhäuser, 2007, p. 373–406. Zbl1126.32020MR2306159
- [37] P. M. Wong – « Nevanlinna theory for holomorphic curves in projective varieties », preprint, 1999.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.