Self-normal numbers

Anne Bertrand-Mathis

Bulletin de la Société Mathématique de France (2013)

  • Volume: 141, Issue: 1, page 25-33
  • ISSN: 0037-9484

Abstract

top
Using a method of Champernowne we propose a construction of self-normal numbers in the sense of Schmeling ; these numbers are dense in 1 , and form a non enumerable set.

How to cite

top

Bertrand-Mathis, Anne. "Nombres self normaux." Bulletin de la Société Mathématique de France 141.1 (2013): 25-33. <http://eudml.org/doc/272569>.

@article{Bertrand2013,
abstract = {Nous inspirant de la construction de Champernowne d’un nombre normal en base 10 nous construisons un ensemble de nombres “self-normaux“ au sens de Schmeling ; cet ensemble est non dénombrable et dense dans $[1,\infty [$.},
author = {Bertrand-Mathis, Anne},
journal = {Bulletin de la Société Mathématique de France},
keywords = {normal numbers; generic points; numeration; symbolic dynamics; prefix codes},
language = {fre},
number = {1},
pages = {25-33},
publisher = {Société mathématique de France},
title = {Nombres self normaux},
url = {http://eudml.org/doc/272569},
volume = {141},
year = {2013},
}

TY - JOUR
AU - Bertrand-Mathis, Anne
TI - Nombres self normaux
JO - Bulletin de la Société Mathématique de France
PY - 2013
PB - Société mathématique de France
VL - 141
IS - 1
SP - 25
EP - 33
AB - Nous inspirant de la construction de Champernowne d’un nombre normal en base 10 nous construisons un ensemble de nombres “self-normaux“ au sens de Schmeling ; cet ensemble est non dénombrable et dense dans $[1,\infty [$.
LA - fre
KW - normal numbers; generic points; numeration; symbolic dynamics; prefix codes
UR - http://eudml.org/doc/272569
ER -

References

top
  1. [1] B. Adamczewski & Y. Bugeaud – « Dynamics for β -shifts and Diophantine approximation », Ergodic Theory Dynam. Systems27 (2007), p. 1695–1711. Zbl1140.11035MR2371591
  2. [2] A. Bertrand-Mathis – « Développement en base θ ; répartition modulo un de la suite ( x θ n ) n 0 ; langages codés et θ -shift », Bull. Soc. Math. France114 (1986), p. 271–323. MR878240
  3. [3] —, « Points génériques de Champernowne sur certains systèmes codes ; application aux θ -shifts », Ergodic Theory Dynam. Systems8 (1988), p. 35–51. Zbl0657.28014MR939059
  4. [4] F. Blanchard & G. Hansel – « Systèmes codés », Theoret. Comput. Sci.44 (1986), p. 17–49. MR858689
  5. [5] D. G. Champernowne – « The Construction of Decimals Normal in the Scale of Ten », J. London Math. Soc.8 (1933), p. 254–260. Zbl0007.33701MR1573965
  6. [6] W. Parry – « On the β -expansions of real numbers », Acta Math. Acad. Sci. Hungar.11 (1960), p. 401–416. Zbl0099.28103MR142719
  7. [7] A. Rényi – « Representations for real numbers and their ergodic properties », Acta Math. Acad. Sci. Hungar8 (1957), p. 477–493. Zbl0079.08901MR97374
  8. [8] J. Schmeling – « Symbolic dynamics for β -shifts and self-normal numbers », Ergodic Theory Dynam. Systems17 (1997), p. 675–694. Zbl0908.58017MR1452189

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.