When is a Riesz distribution a complex measure?

Alan D. Sokal

Bulletin de la Société Mathématique de France (2011)

  • Volume: 139, Issue: 4, page 519-534
  • ISSN: 0037-9484

Abstract

top
Let α be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by α . I give an elementary proof of the necessary and sufficient condition for α to be a locally finite complex measure (= complex Radon measure).

How to cite

top

D. Sokal, Alan. "When is a Riesz distribution a complex measure?." Bulletin de la Société Mathématique de France 139.4 (2011): 519-534. <http://eudml.org/doc/272580>.

@article{D2011,
abstract = {Let $\mathcal \{R\}_\alpha $ be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by $\alpha \in \mathbb \{C\}$. I give an elementary proof of the necessary and sufficient condition for $\mathcal \{R\}_\alpha $ to be a locally finite complex measure (= complex Radon measure).},
author = {D. Sokal, Alan},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Riesz distribution; Jordan algebra; symmetric cone; Gindikin’s theorem; Wallach set; tempered distribution; positive measure; Radon measure; relatively invariant measure; Laplace transform},
language = {eng},
number = {4},
pages = {519-534},
publisher = {Société mathématique de France},
title = {When is a Riesz distribution a complex measure?},
url = {http://eudml.org/doc/272580},
volume = {139},
year = {2011},
}

TY - JOUR
AU - D. Sokal, Alan
TI - When is a Riesz distribution a complex measure?
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 4
SP - 519
EP - 534
AB - Let $\mathcal {R}_\alpha $ be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by $\alpha \in \mathbb {C}$. I give an elementary proof of the necessary and sufficient condition for $\mathcal {R}_\alpha $ to be a locally finite complex measure (= complex Radon measure).
LA - eng
KW - Riesz distribution; Jordan algebra; symmetric cone; Gindikin’s theorem; Wallach set; tempered distribution; positive measure; Radon measure; relatively invariant measure; Laplace transform
UR - http://eudml.org/doc/272580
ER -

References

top
  1. [1] M. F. Atiyah – « Resolution of singularities and division of distributions », Comm. Pure Appl. Math.23 (1970), p. 145–150. Zbl0188.19405MR256156
  2. [2] I. N. Bernšteĭn – « Analytic continuation of generalized functions with respect to a parameter », Funkcional. Anal. i Priložen. 6 (1972), p. 26–40; English translation: Funct. Anal. Appl. 6 (1972), p. 273–285. Zbl0282.46038MR320735
  3. [3] I. N. Bernšteĭn & S. I. Gelʼfand – « Meromorphy of the function P λ », Funkcional. Anal. i Priložen. 3 (1969), p. 84–85; English translation: Funct. Anal. Appl. 3 (1969), p. 68–69. MR247457
  4. [4] J.-E. Björk – Rings of differential operators, North-Holland Mathematical Library, vol. 21, North-Holland Publishing Co., 1979. Zbl0499.13009MR549189
  5. [5] J. Bochnak & J. Siciak – « Analytic functions in topological vector spaces », Studia Math.39 (1971), p. 77–112. Zbl0214.37703MR313811
  6. [6] M. Bonnefoy-Casalis – « Familles exponentielles naturelles invariantes par un groupe », thèse de doctorat, Université Paul Sabatier de Toulouse, 1990. Zbl0753.62007
  7. [7] N. Bourbaki – Éléments de mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: Mesure de Haar. Chapitre 8: Convolution et représentations, Actualités Scientifiques et Industrielles, No. 1306, Hermann, 1963. Zbl0156.03204MR179291
  8. [8] S. Caracciolo, A. Sportiello & A. D. Sokal – « Combinatorial proofs of Cayley-type identities for derivatives of determinants and pfaffians », preprint arXiv:1105.6270. Zbl1277.05012MR3032306
  9. [9] M. Casalis & G. Letac – « Characterization of the Jørgensen set in generalized linear models », Test3 (1994), p. 145–162. Zbl0815.62030MR1293112
  10. [10] J. Faraut – « Formule du binôme généralisée », in Harmonic analysis (Luxembourg, 1987), Lecture Notes in Math., vol. 1359, Springer, 1988, p. 170–180. Zbl0673.30040MR974313
  11. [11] J. Faraut & A. Korányi – « Function spaces and reproducing kernels on bounded symmetric domains », J. Funct. Anal.88 (1990), p. 64–89. Zbl0718.32026MR1033914
  12. [12] —, Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press Oxford Univ. Press, 1994. Zbl0841.43002MR1446489
  13. [13] S. G. Gindikin – « Invariant generalized functions in homogeneous domains », Funkcional. Anal. i Priložen. 9 (1975), p. 56–58; English translation: Funct. Anal. Appl. 9 (1975), p. 50–52. Zbl0332.32022MR377423
  14. [14] K.-G. Grosse-Erdmann – « A weak criterion for vector-valued holomorphy », Math. Proc. Cambridge Philos. Soc.136 (2004), p. 399–411. Zbl1055.46026MR2040581
  15. [15] A. Grothendieck – « Sur certains espaces de fonctions holomorphes. I », J. reine angew. Math. 192 (1953), p. 35–64. Zbl0051.08704MR58865
  16. [16] E. K. Haviland – « On the momentum problem for distribution functions in more than one dimension », Amer. J. Math.57 (1935), p. 562–568. Zbl0013.05904MR1507095
  17. [17] —, « On the momentum problem for distribution functions in more than one dimension. II », Amer. J. Math.58 (1936), p. 164–168. Zbl0015.10901MR1507139JFM62.0483.01
  18. [18] J. Hilgert & K.-H. Neeb – « Vector valued Riesz distributions on Euclidian Jordan algebras », J. Geom. Anal.11 (2001), p. 43–75. Zbl0989.22021MR1829347
  19. [19] L. Hörmander – The analysis of linear partial differential operators. I, second éd., Springer Study Edition, Springer, 1990. Zbl0712.35001MR1065136
  20. [20] H. Ishi – « Positive Riesz distributions on homogeneous cones », J. Math. Soc. Japan52 (2000), p. 161–186. Zbl0954.43003MR1727195
  21. [21] M. Lassalle – « Algèbre de Jordan et ensemble de Wallach », Invent. Math.89 (1987), p. 375–393. Zbl0622.22008MR894386
  22. [22] G. Letac & H. Massam – « The noncentral Wishart as an exponential family, and its moments », J. Multivariate Anal.99 (2008), p. 1393–1417. Zbl1140.62043MR2424357
  23. [23] M. Marshall – Positive polynomials and sums of squares, Mathematical Surveys and Monographs, vol. 146, Amer. Math. Soc., 2008. Zbl1169.13001MR2383959
  24. [24] L. Nachbin – The Haar integral, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. Zbl0127.07602MR175995
  25. [25] S. D. Peddada & D. S. P. Richards – « Proof of a conjecture of M. L. Eaton on the characteristic function of the Wishart distribution », Ann. Probab. 19 (1991), p. 868–874; acknowledgment of priority 20 (1992), p. 1107. Zbl0728.62053MR1106290
  26. [26] L. Schwartz – Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, vol. 9-10, Hermann, 1966. Zbl0149.09501MR209834
  27. [27] D. N. Shanbhag – « The Davidson-Kendall problem and related results on the structure of the Wishart distribution », Austral. J. Statist. 30A (1988), p. 272–280. Zbl0694.62024
  28. [28] T. J. Stieltjes – « Recherches sur les fractions continues », Ann. Fac. Sci. Toulouse 8 (1894), p. J1–J122, 9 (1895), p. A1–A47, reprinted, together with an English translation, in T. J. Stieltjes, Œuvres complètes/Collected Papers, Springer, 1993, vol. II, p. 401–566 and 609–745. JFM25.0326.01
  29. [29] M. Vergne & H. Rossi – « Analytic continuation of the holomorphic discrete series of a semi-simple Lie group », Acta Math.136 (1976), p. 1–59. Zbl0356.32020MR480883
  30. [30] N. R. Wallach – « The analytic continuation of the discrete series. I, II », Trans. Amer. Math. Soc. 251 (1979), p. 1–17, 19–37. Zbl0419.22018MR531967
  31. [31] R. A. Wijsman – Invariant measures on groups and their use in statistics, Institute of Mathematical Statistics Lecture Notes—Monograph Series, 14, Institute of Mathematical Statistics, 1990. Zbl0803.62001MR1218397

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.