When is a Riesz distribution a complex measure?
Bulletin de la Société Mathématique de France (2011)
- Volume: 139, Issue: 4, page 519-534
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topD. Sokal, Alan. "When is a Riesz distribution a complex measure?." Bulletin de la Société Mathématique de France 139.4 (2011): 519-534. <http://eudml.org/doc/272580>.
@article{D2011,
abstract = {Let $\mathcal \{R\}_\alpha $ be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by $\alpha \in \mathbb \{C\}$. I give an elementary proof of the necessary and sufficient condition for $\mathcal \{R\}_\alpha $ to be a locally finite complex measure (= complex Radon measure).},
author = {D. Sokal, Alan},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Riesz distribution; Jordan algebra; symmetric cone; Gindikin’s theorem; Wallach set; tempered distribution; positive measure; Radon measure; relatively invariant measure; Laplace transform},
language = {eng},
number = {4},
pages = {519-534},
publisher = {Société mathématique de France},
title = {When is a Riesz distribution a complex measure?},
url = {http://eudml.org/doc/272580},
volume = {139},
year = {2011},
}
TY - JOUR
AU - D. Sokal, Alan
TI - When is a Riesz distribution a complex measure?
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 4
SP - 519
EP - 534
AB - Let $\mathcal {R}_\alpha $ be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by $\alpha \in \mathbb {C}$. I give an elementary proof of the necessary and sufficient condition for $\mathcal {R}_\alpha $ to be a locally finite complex measure (= complex Radon measure).
LA - eng
KW - Riesz distribution; Jordan algebra; symmetric cone; Gindikin’s theorem; Wallach set; tempered distribution; positive measure; Radon measure; relatively invariant measure; Laplace transform
UR - http://eudml.org/doc/272580
ER -
References
top- [1] M. F. Atiyah – « Resolution of singularities and division of distributions », Comm. Pure Appl. Math.23 (1970), p. 145–150. Zbl0188.19405MR256156
- [2] I. N. Bernšteĭn – « Analytic continuation of generalized functions with respect to a parameter », Funkcional. Anal. i Priložen. 6 (1972), p. 26–40; English translation: Funct. Anal. Appl. 6 (1972), p. 273–285. Zbl0282.46038MR320735
- [3] I. N. Bernšteĭn & S. I. Gelʼfand – « Meromorphy of the function », Funkcional. Anal. i Priložen. 3 (1969), p. 84–85; English translation: Funct. Anal. Appl. 3 (1969), p. 68–69. MR247457
- [4] J.-E. Björk – Rings of differential operators, North-Holland Mathematical Library, vol. 21, North-Holland Publishing Co., 1979. Zbl0499.13009MR549189
- [5] J. Bochnak & J. Siciak – « Analytic functions in topological vector spaces », Studia Math.39 (1971), p. 77–112. Zbl0214.37703MR313811
- [6] M. Bonnefoy-Casalis – « Familles exponentielles naturelles invariantes par un groupe », thèse de doctorat, Université Paul Sabatier de Toulouse, 1990. Zbl0753.62007
- [7] N. Bourbaki – Éléments de mathématique. Fascicule XXIX. Livre VI: Intégration. Chapitre 7: Mesure de Haar. Chapitre 8: Convolution et représentations, Actualités Scientifiques et Industrielles, No. 1306, Hermann, 1963. Zbl0156.03204MR179291
- [8] S. Caracciolo, A. Sportiello & A. D. Sokal – « Combinatorial proofs of Cayley-type identities for derivatives of determinants and pfaffians », preprint arXiv:1105.6270. Zbl1277.05012MR3032306
- [9] M. Casalis & G. Letac – « Characterization of the Jørgensen set in generalized linear models », Test3 (1994), p. 145–162. Zbl0815.62030MR1293112
- [10] J. Faraut – « Formule du binôme généralisée », in Harmonic analysis (Luxembourg, 1987), Lecture Notes in Math., vol. 1359, Springer, 1988, p. 170–180. Zbl0673.30040MR974313
- [11] J. Faraut & A. Korányi – « Function spaces and reproducing kernels on bounded symmetric domains », J. Funct. Anal.88 (1990), p. 64–89. Zbl0718.32026MR1033914
- [12] —, Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press Oxford Univ. Press, 1994. Zbl0841.43002MR1446489
- [13] S. G. Gindikin – « Invariant generalized functions in homogeneous domains », Funkcional. Anal. i Priložen. 9 (1975), p. 56–58; English translation: Funct. Anal. Appl. 9 (1975), p. 50–52. Zbl0332.32022MR377423
- [14] K.-G. Grosse-Erdmann – « A weak criterion for vector-valued holomorphy », Math. Proc. Cambridge Philos. Soc.136 (2004), p. 399–411. Zbl1055.46026MR2040581
- [15] A. Grothendieck – « Sur certains espaces de fonctions holomorphes. I », J. reine angew. Math. 192 (1953), p. 35–64. Zbl0051.08704MR58865
- [16] E. K. Haviland – « On the momentum problem for distribution functions in more than one dimension », Amer. J. Math.57 (1935), p. 562–568. Zbl0013.05904MR1507095
- [17] —, « On the momentum problem for distribution functions in more than one dimension. II », Amer. J. Math.58 (1936), p. 164–168. Zbl0015.10901MR1507139JFM62.0483.01
- [18] J. Hilgert & K.-H. Neeb – « Vector valued Riesz distributions on Euclidian Jordan algebras », J. Geom. Anal.11 (2001), p. 43–75. Zbl0989.22021MR1829347
- [19] L. Hörmander – The analysis of linear partial differential operators. I, second éd., Springer Study Edition, Springer, 1990. Zbl0712.35001MR1065136
- [20] H. Ishi – « Positive Riesz distributions on homogeneous cones », J. Math. Soc. Japan52 (2000), p. 161–186. Zbl0954.43003MR1727195
- [21] M. Lassalle – « Algèbre de Jordan et ensemble de Wallach », Invent. Math.89 (1987), p. 375–393. Zbl0622.22008MR894386
- [22] G. Letac & H. Massam – « The noncentral Wishart as an exponential family, and its moments », J. Multivariate Anal.99 (2008), p. 1393–1417. Zbl1140.62043MR2424357
- [23] M. Marshall – Positive polynomials and sums of squares, Mathematical Surveys and Monographs, vol. 146, Amer. Math. Soc., 2008. Zbl1169.13001MR2383959
- [24] L. Nachbin – The Haar integral, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. Zbl0127.07602MR175995
- [25] S. D. Peddada & D. S. P. Richards – « Proof of a conjecture of M. L. Eaton on the characteristic function of the Wishart distribution », Ann. Probab. 19 (1991), p. 868–874; acknowledgment of priority 20 (1992), p. 1107. Zbl0728.62053MR1106290
- [26] L. Schwartz – Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, vol. 9-10, Hermann, 1966. Zbl0149.09501MR209834
- [27] D. N. Shanbhag – « The Davidson-Kendall problem and related results on the structure of the Wishart distribution », Austral. J. Statist. 30A (1988), p. 272–280. Zbl0694.62024
- [28] T. J. Stieltjes – « Recherches sur les fractions continues », Ann. Fac. Sci. Toulouse 8 (1894), p. J1–J122, 9 (1895), p. A1–A47, reprinted, together with an English translation, in T. J. Stieltjes, Œuvres complètes/Collected Papers, Springer, 1993, vol. II, p. 401–566 and 609–745. JFM25.0326.01
- [29] M. Vergne & H. Rossi – « Analytic continuation of the holomorphic discrete series of a semi-simple Lie group », Acta Math.136 (1976), p. 1–59. Zbl0356.32020MR480883
- [30] N. R. Wallach – « The analytic continuation of the discrete series. I, II », Trans. Amer. Math. Soc. 251 (1979), p. 1–17, 19–37. Zbl0419.22018MR531967
- [31] R. A. Wijsman – Invariant measures on groups and their use in statistics, Institute of Mathematical Statistics Lecture Notes—Monograph Series, 14, Institute of Mathematical Statistics, 1990. Zbl0803.62001MR1218397
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.