Self-improving bounds for the Navier-Stokes equations

Jean-Yves Chemin; Fabrice Planchon

Bulletin de la Société Mathématique de France (2012)

  • Volume: 140, Issue: 4, page 583-597
  • ISSN: 0037-9484

Abstract

top
We consider regular solutions to the Navier-Stokes equation and provide an extension to the Escauriaza-Seregin-Sverak blow-up criterion in the negative regularity Besov scale, with regularity arbitrarly close to - 1 . Our results rely on turning a priori bounds for the solution in negative Besov spaces into bounds in the positive regularity scale.

How to cite

top

Chemin, Jean-Yves, and Planchon, Fabrice. "Self-improving bounds for the Navier-Stokes equations." Bulletin de la Société Mathématique de France 140.4 (2012): 583-597. <http://eudml.org/doc/272604>.

@article{Chemin2012,
abstract = {We consider regular solutions to the Navier-Stokes equation and provide an extension to the Escauriaza-Seregin-Sverak blow-up criterion in the negative regularity Besov scale, with regularity arbitrarly close to $-1$. Our results rely on turning a priori bounds for the solution in negative Besov spaces into bounds in the positive regularity scale.},
author = {Chemin, Jean-Yves, Planchon, Fabrice},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Navier-Stokes equations; blow-up criterion; Besov spaces},
language = {eng},
number = {4},
pages = {583-597},
publisher = {Société mathématique de France},
title = {Self-improving bounds for the Navier-Stokes equations},
url = {http://eudml.org/doc/272604},
volume = {140},
year = {2012},
}

TY - JOUR
AU - Chemin, Jean-Yves
AU - Planchon, Fabrice
TI - Self-improving bounds for the Navier-Stokes equations
JO - Bulletin de la Société Mathématique de France
PY - 2012
PB - Société mathématique de France
VL - 140
IS - 4
SP - 583
EP - 597
AB - We consider regular solutions to the Navier-Stokes equation and provide an extension to the Escauriaza-Seregin-Sverak blow-up criterion in the negative regularity Besov scale, with regularity arbitrarly close to $-1$. Our results rely on turning a priori bounds for the solution in negative Besov spaces into bounds in the positive regularity scale.
LA - eng
KW - Navier-Stokes equations; blow-up criterion; Besov spaces
UR - http://eudml.org/doc/272604
ER -

References

top
  1. [1] M. Cannone – « A generalization of a theorem by Kato on Navier-Stokes equations », Rev. Mat. Iberoamericana13 (1997), p. 515–541. Zbl0897.35061MR1617394
  2. [2] M. Cannone & F. Planchon – « On the regularity of the bilinear term for solutions to the incompressible Navier-Stokes equations », Rev. Mat. Iberoamericana16 (2000), p. 1–16. Zbl0965.35121MR1768531
  3. [3] J.-Y. Chemin – « Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel », J. Anal. Math.77 (1999), p. 27–50. Zbl0938.35125MR1753481
  4. [4] A. Cheskidov & R. Shvydkoy – « The regularity of weak solutions of the 3D Navier-Stokes equations in B , - 1 », Arch. Ration. Mech. Anal.195 (2010), p. 159–169. Zbl1186.35137MR2564471
  5. [5] I. Gallagher, D. Iftimie & F. Planchon – « Asymptotics and stability for global solutions to the Navier-Stokes equations », Ann. Inst. Fourier (Grenoble) 53 (2003), p. 1387–1424. Zbl1038.35054MR2032938
  6. [6] I. Gallagher, G. Koch & F. Planchon – « A profile decomposition approach to the L t ( L x 3 ) Navier-Stokes regularity criterion », Math. Ann. (2012), doi:10.1007/s00208-012-0830-0 and arXiv:math/1012.0145. Zbl1291.35180
  7. [7] L. Iskauriaza, G. A. Serëgin & V. Shverak – « L 3 , -solutions of Navier-Stokes equations and backward uniqueness », Uspekhi Mat. Nauk58 (2003), p. 3–44. Zbl1064.35134MR1992563
  8. [8] T. Kato – « Strong L p -solutions of the Navier-Stokes equation in 𝐑 m , with applications to weak solutions », Math. Z.187 (1984), p. 471–480. Zbl0545.35073MR760047
  9. [9] T. Kato & H. Fujita – « On the nonstationary Navier-Stokes system », Rend. Sem. Mat. Univ. Padova32 (1962), p. 243–260. Zbl0114.05002MR142928
  10. [10] H. Koch & D. Tataru – « Well-posedness for the Navier-Stokes equations », Adv. Math.157 (2001), p. 22–35. Zbl0972.35084MR1808843
  11. [11] J. Leray – « Essai sur le mouvement d’un liquide visqueux emplissant l’espace », Acta Mathematica63 (1933), p. 193–248. JFM60.0726.05
  12. [12] F. Planchon – « Asymptotic behavior of global solutions to the Navier-Stokes equations in 𝐑 3 », Rev. Mat. Iberoamericana14 (1998), p. 71–93. Zbl0910.35096MR1639283

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.