Hilbert schemes and stable pairs: GIT and derived category wall crossings
Jacopo Stoppa; Richard P. Thomas
Bulletin de la Société Mathématique de France (2011)
- Volume: 139, Issue: 3, page 297-339
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topStoppa, Jacopo, and Thomas, Richard P.. "Hilbert schemes and stable pairs: GIT and derived category wall crossings." Bulletin de la Société Mathématique de France 139.3 (2011): 297-339. <http://eudml.org/doc/272609>.
@article{Stoppa2011,
abstract = {We show that the Hilbert scheme of curves and Le Potier’s moduli space of stable pairs with one dimensional support have a common GIT construction. The two spaces correspond to chambers on either side of a wall in the space of GIT linearisations.
We explain why this is not enough to prove the “DT/PT wall crossing conjecture” relating the invariants derived from these moduli spaces when the underlying variety is a 3-fold. We then give a gentle introduction to a small part of Joyce’s theory for such wall crossings, and use it to give a short proof of an identity relating the Euler characteristics of these moduli spaces.
When the 3-fold is Calabi-Yau the identity is the Euler-characteristic analogue of the DT/PT wall crossing conjecture, but for general 3-folds it is something different, as we discuss.},
author = {Stoppa, Jacopo, Thomas, Richard P.},
journal = {Bulletin de la Société Mathématique de France},
language = {eng},
number = {3},
pages = {297-339},
publisher = {Société mathématique de France},
title = {Hilbert schemes and stable pairs: GIT and derived category wall crossings},
url = {http://eudml.org/doc/272609},
volume = {139},
year = {2011},
}
TY - JOUR
AU - Stoppa, Jacopo
AU - Thomas, Richard P.
TI - Hilbert schemes and stable pairs: GIT and derived category wall crossings
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 3
SP - 297
EP - 339
AB - We show that the Hilbert scheme of curves and Le Potier’s moduli space of stable pairs with one dimensional support have a common GIT construction. The two spaces correspond to chambers on either side of a wall in the space of GIT linearisations.
We explain why this is not enough to prove the “DT/PT wall crossing conjecture” relating the invariants derived from these moduli spaces when the underlying variety is a 3-fold. We then give a gentle introduction to a small part of Joyce’s theory for such wall crossings, and use it to give a short proof of an identity relating the Euler characteristics of these moduli spaces.
When the 3-fold is Calabi-Yau the identity is the Euler-characteristic analogue of the DT/PT wall crossing conjecture, but for general 3-folds it is something different, as we discuss.
LA - eng
UR - http://eudml.org/doc/272609
ER -
References
top- [1] A. Bayer – « Polynomial Bridgeland stability conditions and the large volume limit », Geom. Topol.13 (2009), p. 2389–2425. Zbl1171.14011MR2515708
- [2] K. Behrend – « Donaldson-Thomas type invariants via microlocal geometry », Ann. of Math.170 (2009), p. 1307–1338. Zbl1191.14050MR2600874
- [3] K. Behrend & B. Fantechi – « Symmetric obstruction theories and Hilbert schemes of points on threefolds », Algebra Number Theory2 (2008), p. 313–345. Zbl1170.14004MR2407118
- [4] T. Bridgeland – « Hall algebras and curve-counting invariants », J. Amer. Math. Soc.24 (2011), p. 969–998. Zbl1234.14039MR2813335
- [5] J. Cheah – « On the cohomology of Hilbert schemes of points », J. Algebraic Geom.5 (1996), p. 479–511. Zbl0889.14001MR1382733
- [6] I. V. Dolgachev & Y. Hu – « Variation of geometric invariant theory quotients », Publ. Math. I.H.É.S. 87 (1998), p. 5–56. Zbl1001.14018MR1659282
- [7] J. Fogarty – « Algebraic families on an algebraic surface », Amer. J. Math90 (1968), p. 511–521. Zbl0176.18401MR237496
- [8] D. Huybrechts & M. Lehn – The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, 1997. Zbl0872.14002MR1450870
- [9] D. Huybrechts & R. P. Thomas – « Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes », Math. Ann.346 (2010), p. 545–569. Zbl1186.14014MR2578562
- [10] D. Joyce – « Configurations in abelian categories. II. Ringel-Hall algebras », Adv. Math.210 (2007), p. 635–706. Zbl1119.14005MR2303235
- [11] —, « Configurations in abelian categories. IV. Invariants and changing stability conditions », Adv. Math.217 (2008), p. 125–204. Zbl1134.14008MR2357325
- [12] D. Joyce & Y. Song – « A theory of generalized Donaldson-Thomas invariants », Memoirs of the AMS (2011), http://dx.doi.org/10.1090/S0065-9266-2011-00630-1. Zbl1259.14054MR2951762
- [13] M. Kontsevich & Y. Soibelman – « Stability structures, motivic Donaldson-Thomas invariants and cluster transformations », preprint arXiv:0811.2435.
- [14] J. Le Potier – « Systèmes cohérents et structures de niveau », Astérisque 214 (1993). Zbl0881.14008
- [15] M. Levine & R. Pandharipande – « Algebraic cobordism revisited », Invent. Math.176 (2009), p. 63–130. Zbl1210.14025MR2485880
- [16] J. Li – « Zero dimensional Donaldson-Thomas invariants of threefolds », Geom. Topol.10 (2006), p. 2117–2171. Zbl1140.14012MR2284053
- [17] D. Maulik, N. Nekrasov, A. Okounkov & R. Pandharipande – « Gromov-Witten theory and Donaldson-Thomas theory. I », Compos. Math.142 (2006), p. 1263–1285. Zbl1108.14046MR2264664
- [18] K. Nagao – « Derived categories of small toric Calabi-Yau 3-folds and counting invariants », preprint arXiv:0809.2994. Zbl1259.14017MR2999994
- [19] K. Nagao & H. Nakajima – « Counting invariant of perverse coherent sheaves and its wall-crossing », preprint arXiv:0809.2992. Zbl1250.14021MR2836398
- [20] R. Pandharipande & R. P. Thomas – « The 3-fold vertex via stable pairs », Geom. Topol.13 (2009), p. 1835–1876. Zbl1195.14073MR2497313
- [21] —, « Curve counting via stable pairs in the derived category », Invent. Math.178 (2009), p. 407–447. Zbl1204.14026MR2545686
- [22] —, « Stable pairs and BPS invariants », J. Amer. Math. Soc.23 (2010), p. 267–297. Zbl1250.14035MR2552254
- [23] M. Thaddeus – « Geometric invariant theory and flips », J. Amer. Math. Soc.9 (1996), p. 691–723. Zbl0874.14042MR1333296
- [24] R. P. Thomas – « A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on fibrations », J. Differential Geom.54 (2000), p. 367–438. Zbl1034.14015MR1818182
- [25] Y. Toda – « Limit stable objects on Calabi-Yau 3-folds », Duke Math. J.149 (2009), p. 157–208. Zbl1172.14007MR2541209
- [26] —, « Curve counting theories via stable objects I. DT/PT correspondence », J. Amer. Math. Soc.23 (2010), p. 1119–1157. Zbl1207.14020MR2669709
- [27] —, « Generating functions of stable pair invariants via wall-crossings in derived categories », in New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008), Adv. Stud. Pure Math., vol. 59, Math. Soc. Japan, 2010, p. 389–434. Zbl1216.14009MR2683216
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.