Hilbert schemes and stable pairs: GIT and derived category wall crossings

Jacopo Stoppa; Richard P. Thomas

Bulletin de la Société Mathématique de France (2011)

  • Volume: 139, Issue: 3, page 297-339
  • ISSN: 0037-9484

Abstract

top
We show that the Hilbert scheme of curves and Le Potier’s moduli space of stable pairs with one dimensional support have a common GIT construction. The two spaces correspond to chambers on either side of a wall in the space of GIT linearisations. We explain why this is not enough to prove the “DT/PT wall crossing conjecture” relating the invariants derived from these moduli spaces when the underlying variety is a 3-fold. We then give a gentle introduction to a small part of Joyce’s theory for such wall crossings, and use it to give a short proof of an identity relating the Euler characteristics of these moduli spaces. When the 3-fold is Calabi-Yau the identity is the Euler-characteristic analogue of the DT/PT wall crossing conjecture, but for general 3-folds it is something different, as we discuss.

How to cite

top

Stoppa, Jacopo, and Thomas, Richard P.. "Hilbert schemes and stable pairs: GIT and derived category wall crossings." Bulletin de la Société Mathématique de France 139.3 (2011): 297-339. <http://eudml.org/doc/272609>.

@article{Stoppa2011,
abstract = {We show that the Hilbert scheme of curves and Le Potier’s moduli space of stable pairs with one dimensional support have a common GIT construction. The two spaces correspond to chambers on either side of a wall in the space of GIT linearisations. We explain why this is not enough to prove the “DT/PT wall crossing conjecture” relating the invariants derived from these moduli spaces when the underlying variety is a 3-fold. We then give a gentle introduction to a small part of Joyce’s theory for such wall crossings, and use it to give a short proof of an identity relating the Euler characteristics of these moduli spaces. When the 3-fold is Calabi-Yau the identity is the Euler-characteristic analogue of the DT/PT wall crossing conjecture, but for general 3-folds it is something different, as we discuss.},
author = {Stoppa, Jacopo, Thomas, Richard P.},
journal = {Bulletin de la Société Mathématique de France},
language = {eng},
number = {3},
pages = {297-339},
publisher = {Société mathématique de France},
title = {Hilbert schemes and stable pairs: GIT and derived category wall crossings},
url = {http://eudml.org/doc/272609},
volume = {139},
year = {2011},
}

TY - JOUR
AU - Stoppa, Jacopo
AU - Thomas, Richard P.
TI - Hilbert schemes and stable pairs: GIT and derived category wall crossings
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 3
SP - 297
EP - 339
AB - We show that the Hilbert scheme of curves and Le Potier’s moduli space of stable pairs with one dimensional support have a common GIT construction. The two spaces correspond to chambers on either side of a wall in the space of GIT linearisations. We explain why this is not enough to prove the “DT/PT wall crossing conjecture” relating the invariants derived from these moduli spaces when the underlying variety is a 3-fold. We then give a gentle introduction to a small part of Joyce’s theory for such wall crossings, and use it to give a short proof of an identity relating the Euler characteristics of these moduli spaces. When the 3-fold is Calabi-Yau the identity is the Euler-characteristic analogue of the DT/PT wall crossing conjecture, but for general 3-folds it is something different, as we discuss.
LA - eng
UR - http://eudml.org/doc/272609
ER -

References

top
  1. [1] A. Bayer – « Polynomial Bridgeland stability conditions and the large volume limit », Geom. Topol.13 (2009), p. 2389–2425. Zbl1171.14011MR2515708
  2. [2] K. Behrend – « Donaldson-Thomas type invariants via microlocal geometry », Ann. of Math.170 (2009), p. 1307–1338. Zbl1191.14050MR2600874
  3. [3] K. Behrend & B. Fantechi – « Symmetric obstruction theories and Hilbert schemes of points on threefolds », Algebra Number Theory2 (2008), p. 313–345. Zbl1170.14004MR2407118
  4. [4] T. Bridgeland – « Hall algebras and curve-counting invariants », J. Amer. Math. Soc.24 (2011), p. 969–998. Zbl1234.14039MR2813335
  5. [5] J. Cheah – « On the cohomology of Hilbert schemes of points », J. Algebraic Geom.5 (1996), p. 479–511. Zbl0889.14001MR1382733
  6. [6] I. V. Dolgachev & Y. Hu – « Variation of geometric invariant theory quotients », Publ. Math. I.H.É.S. 87 (1998), p. 5–56. Zbl1001.14018MR1659282
  7. [7] J. Fogarty – « Algebraic families on an algebraic surface », Amer. J. Math90 (1968), p. 511–521. Zbl0176.18401MR237496
  8. [8] D. Huybrechts & M. Lehn – The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, 1997. Zbl0872.14002MR1450870
  9. [9] D. Huybrechts & R. P. Thomas – « Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes », Math. Ann.346 (2010), p. 545–569. Zbl1186.14014MR2578562
  10. [10] D. Joyce – « Configurations in abelian categories. II. Ringel-Hall algebras », Adv. Math.210 (2007), p. 635–706. Zbl1119.14005MR2303235
  11. [11] —, « Configurations in abelian categories. IV. Invariants and changing stability conditions », Adv. Math.217 (2008), p. 125–204. Zbl1134.14008MR2357325
  12. [12] D. Joyce & Y. Song – « A theory of generalized Donaldson-Thomas invariants », Memoirs of the AMS (2011), http://dx.doi.org/10.1090/S0065-9266-2011-00630-1. Zbl1259.14054MR2951762
  13. [13] M. Kontsevich & Y. Soibelman – « Stability structures, motivic Donaldson-Thomas invariants and cluster transformations », preprint arXiv:0811.2435. 
  14. [14] J. Le Potier – « Systèmes cohérents et structures de niveau », Astérisque 214 (1993). Zbl0881.14008
  15. [15] M. Levine & R. Pandharipande – « Algebraic cobordism revisited », Invent. Math.176 (2009), p. 63–130. Zbl1210.14025MR2485880
  16. [16] J. Li – « Zero dimensional Donaldson-Thomas invariants of threefolds », Geom. Topol.10 (2006), p. 2117–2171. Zbl1140.14012MR2284053
  17. [17] D. Maulik, N. Nekrasov, A. Okounkov & R. Pandharipande – « Gromov-Witten theory and Donaldson-Thomas theory. I », Compos. Math.142 (2006), p. 1263–1285. Zbl1108.14046MR2264664
  18. [18] K. Nagao – « Derived categories of small toric Calabi-Yau 3-folds and counting invariants », preprint arXiv:0809.2994. Zbl1259.14017MR2999994
  19. [19] K. Nagao & H. Nakajima – « Counting invariant of perverse coherent sheaves and its wall-crossing », preprint arXiv:0809.2992. Zbl1250.14021MR2836398
  20. [20] R. Pandharipande & R. P. Thomas – « The 3-fold vertex via stable pairs », Geom. Topol.13 (2009), p. 1835–1876. Zbl1195.14073MR2497313
  21. [21] —, « Curve counting via stable pairs in the derived category », Invent. Math.178 (2009), p. 407–447. Zbl1204.14026MR2545686
  22. [22] —, « Stable pairs and BPS invariants », J. Amer. Math. Soc.23 (2010), p. 267–297. Zbl1250.14035MR2552254
  23. [23] M. Thaddeus – « Geometric invariant theory and flips », J. Amer. Math. Soc.9 (1996), p. 691–723. Zbl0874.14042MR1333296
  24. [24] R. P. Thomas – « A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K 3 fibrations », J. Differential Geom.54 (2000), p. 367–438. Zbl1034.14015MR1818182
  25. [25] Y. Toda – « Limit stable objects on Calabi-Yau 3-folds », Duke Math. J.149 (2009), p. 157–208. Zbl1172.14007MR2541209
  26. [26] —, « Curve counting theories via stable objects I. DT/PT correspondence », J. Amer. Math. Soc.23 (2010), p. 1119–1157. Zbl1207.14020MR2669709
  27. [27] —, « Generating functions of stable pair invariants via wall-crossings in derived categories », in New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008), Adv. Stud. Pure Math., vol. 59, Math. Soc. Japan, 2010, p. 389–434. Zbl1216.14009MR2683216

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.