A central limit theorem for two-dimensional random walks in a cone

Rodolphe Garbit

Bulletin de la Société Mathématique de France (2011)

  • Volume: 139, Issue: 2, page 271-286
  • ISSN: 0037-9484

Abstract

top
We prove that a planar random walk with bounded increments and mean zero which is conditioned to stay in a cone converges weakly to the corresponding Brownian meander if and only if the tail distribution of the exit time from the cone is regularly varying. This condition is satisfied in many natural examples.

How to cite

top

Garbit, Rodolphe. "A central limit theorem for two-dimensional random walks in a cone." Bulletin de la Société Mathématique de France 139.2 (2011): 271-286. <http://eudml.org/doc/272623>.

@article{Garbit2011,
abstract = {We prove that a planar random walk with bounded increments and mean zero which is conditioned to stay in a cone converges weakly to the corresponding Brownian meander if and only if the tail distribution of the exit time from the cone is regularly varying. This condition is satisfied in many natural examples.},
author = {Garbit, Rodolphe},
journal = {Bulletin de la Société Mathématique de France},
keywords = {conditioned random walks; brownian motion; brownian meander; cone; functional limit theorem; regularly varying sequences},
language = {eng},
number = {2},
pages = {271-286},
publisher = {Société mathématique de France},
title = {A central limit theorem for two-dimensional random walks in a cone},
url = {http://eudml.org/doc/272623},
volume = {139},
year = {2011},
}

TY - JOUR
AU - Garbit, Rodolphe
TI - A central limit theorem for two-dimensional random walks in a cone
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 2
SP - 271
EP - 286
AB - We prove that a planar random walk with bounded increments and mean zero which is conditioned to stay in a cone converges weakly to the corresponding Brownian meander if and only if the tail distribution of the exit time from the cone is regularly varying. This condition is satisfied in many natural examples.
LA - eng
KW - conditioned random walks; brownian motion; brownian meander; cone; functional limit theorem; regularly varying sequences
UR - http://eudml.org/doc/272623
ER -

References

top
  1. [1] P. Billingsley – Convergence of probability measures, John Wiley & Sons Inc., 1968. Zbl0944.60003MR233396
  2. [2] R. Bojanic & E. Seneta – « A unified theory of regularly varying sequences », Math. Z.134 (1973), p. 91–106. Zbl0256.40002MR333082
  3. [3] E. Bolthausen – « On a functional central limit theorem for random walks conditioned to stay positive », Ann. Probability4 (1976), p. 480–485. Zbl0336.60024MR415702
  4. [4] R. T. Durrett, D. L. Iglehart & D. R. Miller – « Weak convergence to Brownian meander and Brownian excursion », Ann. Probability5 (1977), p. 117–129. Zbl0356.60034MR436353
  5. [5] R. Garbit – « Contributions à l’étude d’une marche aléatoire centrifuge et théorèmes limites pour des processus aléatoires conditionnés », Thèse, Université de Tours, 2008. 
  6. [6] —, « Brownian motion conditioned to stay in a cone », J. Math. Kyoto Univ.49 (2009), p. 573–592. Zbl1192.60091MR2583602
  7. [7] D. L. Iglehart – « Functional central limit theorems for random walks conditioned to stay positive », Ann. Probability2 (1974), p. 608–619. Zbl0299.60053MR362499
  8. [8] R. Lang – « A note on the measurability of convex sets », Arch. Math. (Basel) 47 (1986), p. 90–92. Zbl0607.28003MR855142
  9. [9] M. Shimura – « Excursions in a cone for two-dimensional Brownian motion », J. Math. Kyoto Univ.25 (1985), p. 433–443. Zbl0582.60048MR807490
  10. [10] —, « A limit theorem for two-dimensional random walk conditioned to stay in a cone », Yokohama Math. J.39 (1991), p. 21–36. Zbl0741.60068MR1137264
  11. [11] F. Spitzer – « A Tauberian theorem and its probability interpretation », Trans. Amer. Math. Soc.94 (1960), p. 150–169. Zbl0216.21201MR111066
  12. [12] N. T. Varopoulos – « Potential theory in conical domains », Math. Proc. Cambridge Philos. Soc.125 (1999), p. 335–384. Zbl0918.31008MR1643806
  13. [13] I. Weissman – « A note on Bojanic-Seneta theory of regularly varying sequences », Math. Z.151 (1976), p. 29–30. Zbl0319.40003MR417349

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.