A central limit theorem for two-dimensional random walks in a cone
Bulletin de la Société Mathématique de France (2011)
- Volume: 139, Issue: 2, page 271-286
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topGarbit, Rodolphe. "A central limit theorem for two-dimensional random walks in a cone." Bulletin de la Société Mathématique de France 139.2 (2011): 271-286. <http://eudml.org/doc/272623>.
@article{Garbit2011,
abstract = {We prove that a planar random walk with bounded increments and mean zero which is conditioned to stay in a cone converges weakly to the corresponding Brownian meander if and only if the tail distribution of the exit time from the cone is regularly varying. This condition is satisfied in many natural examples.},
author = {Garbit, Rodolphe},
journal = {Bulletin de la Société Mathématique de France},
keywords = {conditioned random walks; brownian motion; brownian meander; cone; functional limit theorem; regularly varying sequences},
language = {eng},
number = {2},
pages = {271-286},
publisher = {Société mathématique de France},
title = {A central limit theorem for two-dimensional random walks in a cone},
url = {http://eudml.org/doc/272623},
volume = {139},
year = {2011},
}
TY - JOUR
AU - Garbit, Rodolphe
TI - A central limit theorem for two-dimensional random walks in a cone
JO - Bulletin de la Société Mathématique de France
PY - 2011
PB - Société mathématique de France
VL - 139
IS - 2
SP - 271
EP - 286
AB - We prove that a planar random walk with bounded increments and mean zero which is conditioned to stay in a cone converges weakly to the corresponding Brownian meander if and only if the tail distribution of the exit time from the cone is regularly varying. This condition is satisfied in many natural examples.
LA - eng
KW - conditioned random walks; brownian motion; brownian meander; cone; functional limit theorem; regularly varying sequences
UR - http://eudml.org/doc/272623
ER -
References
top- [1] P. Billingsley – Convergence of probability measures, John Wiley & Sons Inc., 1968. Zbl0944.60003MR233396
- [2] R. Bojanic & E. Seneta – « A unified theory of regularly varying sequences », Math. Z.134 (1973), p. 91–106. Zbl0256.40002MR333082
- [3] E. Bolthausen – « On a functional central limit theorem for random walks conditioned to stay positive », Ann. Probability4 (1976), p. 480–485. Zbl0336.60024MR415702
- [4] R. T. Durrett, D. L. Iglehart & D. R. Miller – « Weak convergence to Brownian meander and Brownian excursion », Ann. Probability5 (1977), p. 117–129. Zbl0356.60034MR436353
- [5] R. Garbit – « Contributions à l’étude d’une marche aléatoire centrifuge et théorèmes limites pour des processus aléatoires conditionnés », Thèse, Université de Tours, 2008.
- [6] —, « Brownian motion conditioned to stay in a cone », J. Math. Kyoto Univ.49 (2009), p. 573–592. Zbl1192.60091MR2583602
- [7] D. L. Iglehart – « Functional central limit theorems for random walks conditioned to stay positive », Ann. Probability2 (1974), p. 608–619. Zbl0299.60053MR362499
- [8] R. Lang – « A note on the measurability of convex sets », Arch. Math. (Basel) 47 (1986), p. 90–92. Zbl0607.28003MR855142
- [9] M. Shimura – « Excursions in a cone for two-dimensional Brownian motion », J. Math. Kyoto Univ.25 (1985), p. 433–443. Zbl0582.60048MR807490
- [10] —, « A limit theorem for two-dimensional random walk conditioned to stay in a cone », Yokohama Math. J.39 (1991), p. 21–36. Zbl0741.60068MR1137264
- [11] F. Spitzer – « A Tauberian theorem and its probability interpretation », Trans. Amer. Math. Soc.94 (1960), p. 150–169. Zbl0216.21201MR111066
- [12] N. T. Varopoulos – « Potential theory in conical domains », Math. Proc. Cambridge Philos. Soc.125 (1999), p. 335–384. Zbl0918.31008MR1643806
- [13] I. Weissman – « A note on Bojanic-Seneta theory of regularly varying sequences », Math. Z.151 (1976), p. 29–30. Zbl0319.40003MR417349
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.