A central limit theorem for two-dimensional random walks in a cone
Bulletin de la Société Mathématique de France (2011)
- Volume: 139, Issue: 2, page 271-286
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] P. Billingsley – Convergence of probability measures, John Wiley & Sons Inc., 1968. Zbl0944.60003MR233396
- [2] R. Bojanic & E. Seneta – « A unified theory of regularly varying sequences », Math. Z.134 (1973), p. 91–106. Zbl0256.40002MR333082
- [3] E. Bolthausen – « On a functional central limit theorem for random walks conditioned to stay positive », Ann. Probability4 (1976), p. 480–485. Zbl0336.60024MR415702
- [4] R. T. Durrett, D. L. Iglehart & D. R. Miller – « Weak convergence to Brownian meander and Brownian excursion », Ann. Probability5 (1977), p. 117–129. Zbl0356.60034MR436353
- [5] R. Garbit – « Contributions à l’étude d’une marche aléatoire centrifuge et théorèmes limites pour des processus aléatoires conditionnés », Thèse, Université de Tours, 2008.
- [6] —, « Brownian motion conditioned to stay in a cone », J. Math. Kyoto Univ.49 (2009), p. 573–592. Zbl1192.60091MR2583602
- [7] D. L. Iglehart – « Functional central limit theorems for random walks conditioned to stay positive », Ann. Probability2 (1974), p. 608–619. Zbl0299.60053MR362499
- [8] R. Lang – « A note on the measurability of convex sets », Arch. Math. (Basel) 47 (1986), p. 90–92. Zbl0607.28003MR855142
- [9] M. Shimura – « Excursions in a cone for two-dimensional Brownian motion », J. Math. Kyoto Univ.25 (1985), p. 433–443. Zbl0582.60048MR807490
- [10] —, « A limit theorem for two-dimensional random walk conditioned to stay in a cone », Yokohama Math. J.39 (1991), p. 21–36. Zbl0741.60068MR1137264
- [11] F. Spitzer – « A Tauberian theorem and its probability interpretation », Trans. Amer. Math. Soc.94 (1960), p. 150–169. Zbl0216.21201MR111066
- [12] N. T. Varopoulos – « Potential theory in conical domains », Math. Proc. Cambridge Philos. Soc.125 (1999), p. 335–384. Zbl0918.31008MR1643806
- [13] I. Weissman – « A note on Bojanic-Seneta theory of regularly varying sequences », Math. Z.151 (1976), p. 29–30. Zbl0319.40003MR417349