Normal forms for conformal vector fields
Charles Frances; Karin Melnick
Bulletin de la Société Mathématique de France (2013)
- Volume: 141, Issue: 3, page 377-421
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D. V. Alekseevskiĭ – « Groups of conformal transformations of Riemannian spaces », Mat. Sb. (N.S.) 89 (131) (1972), p. 280–296. MR334077
- [2] T. Barbot, V. Charette, T. Drumm, W. M. Goldman & K. Melnick – « A primer on the Einstein universe », in Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, p. 179–229. MR2436232
- [3] A. L. Besse – Einstein manifolds, Ergebn. Math. Grenzg., vol. 10, Springer, 1987. MR867684
- [4] A. Čap & K. Melnick – « Essential Killing fields of parabolic geometries », à paraître dans Indiana Univ. Math. J.
- [5] M. S. Capocci – « Conformal vector fields and non-degenerate distributions », Classical Quantum Gravity13 (1996), p. 1717–1726. Zbl0858.53067MR1400934
- [6] —, « Essential conformal vector fields », Classical Quantum Gravity16 (1999), p. 927–935. MR1682585
- [7] C. Frances – « Géométrie et dynamique lorentziennes conformes », thèse de doctorat, École normale supérieure de Lyon, 2002.
- [8] —, « Causal conformal vector fields, and singularities of twistor spinors », Ann. Global Anal. Geom.32 (2007), p. 277–295. Zbl1126.53014MR2336178
- [9] —, « Dégénerescence locale des transformations pseudo-riemanniennes conformes », Ann. Inst. Fourier62 (2012), p. 1627–1669. MR3025150
- [10] —, « Local dynamics of conformal vector fields », Geom. Dedicata158 (2012), p. 35–59. Zbl1246.53096MR2922702
- [11] C. Frances & K. Melnick – « Conformal actions of nilpotent groups on pseudo-Riemannian manifolds », Duke Math. J.153 (2010), p. 511–550. Zbl1204.53056MR2667424
- [12] M. Gromov – « Rigid transformations groups », in Géométrie différentielle (Paris, 1986), Travaux en Cours, vol. 33, Hermann, 1988, p. 65–139. MR955852
- [13] G. S. Hall, M. S. Capocci & R. Beig – « Zeros of conformal vector fields », Classical Quantum Gravity14 (1997), p. 49–52. MR1439817
- [14] S. Kobayashi – Transformation groups in differential geometry, Classics in Mathematics, Springer, 1995. MR1336823
- [15] W. Kühnel & H.-B. Rademacher – « Essential conformal fields in pseudo-Riemannian geometry », J. Math. Pures Appl.74 (1995), p. 453–481. Zbl0873.53047MR1354338
- [16] —, « Conformal vector fields on pseudo-Riemannian spaces », Differential Geom. Appl.7 (1997), p. 237–250. Zbl0901.53048MR1480537
- [17] —, « Essential conformal fields in pseudo-Riemannian geometry. II », J. Math. Sci. Univ. Tokyo4 (1997), p. 649–662. Zbl0902.53046MR1484606
- [18] K. Melnick – « A Frobenius theorem for Cartan geometries, with applications », Enseign. Math.57 (2011), p. 57–89. Zbl1242.53029MR2850584
- [19] D. W. Morris – Ratner’s theorems on unipotent flows, Chicago Lectures in Mathematics, University of Chicago Press, 2005. MR2158954
- [20] T. Nagano & T. Ochiai – « On compact Riemannian manifolds admitting essential projective transformations », J. Fac. Sci. Univ. Tokyo Sect. IA Math.33 (1986), p. 233–246. Zbl0645.53022MR866391
- [21] R. W. Sharpe – Differential geometry, Graduate Texts in Math., vol. 166, Springer, 1997. MR1453120
- [22] T. A. Springer – Linear algebraic groups, second éd., Progress in Math., vol. 9, Birkhäuser, 1998. MR1642713
- [23] M. Steller – « Conformal vector fields on spacetimes », Ann. Global Anal. Geom.29 (2006), p. 293–317. Zbl1095.53013MR2251424