Extension of Estermann’s theorem to Euler products associated to a multivariate polynomial

Ludovic Delabarre

Bulletin de la Société Mathématique de France (2013)

  • Volume: 141, Issue: 2, page 225-265
  • ISSN: 0037-9484

Abstract

top
Given a multivariate polynomial h X 1 , , X n with integral coefficients verifying an hypothesis of analytic regularity (and satisfying h ( 0 ) = 1 ), we determine the maximal domain of meromorphy of the Euler product p prime h p - s 1 , , p - s n and the natural boundary is precisely described when it exists. In this way we extend a well known result for one variable polynomials due to Estermann from 1928. As an application, we calculate the natural boundary of the multivariate Euler products associated to a family of toric varieties.

How to cite

top

Delabarre, Ludovic. "Extension of Estermann’s theorem to Euler products associated to a multivariate polynomial." Bulletin de la Société Mathématique de France 141.2 (2013): 225-265. <http://eudml.org/doc/272653>.

@article{Delabarre2013,
abstract = {Given a multivariate polynomial $h\left(X_1,\dots ,X_n\right)$ with integral coefficients verifying an hypothesis of analytic regularity (and satisfying $h(\textbf \{0\})=1$), we determine the maximal domain of meromorphy of the Euler product $\prod _\{p \ \textrm \{prime\}\}h\left(p^\{-s_1\},\dots ,p^\{-s_n\}\right)$ and the natural boundary is precisely described when it exists. In this way we extend a well known result for one variable polynomials due to Estermann from 1928. As an application, we calculate the natural boundary of the multivariate Euler products associated to a family of toric varieties.},
author = {Delabarre, Ludovic},
journal = {Bulletin de la Société Mathématique de France},
keywords = {multivariables Euler products; meromorphic continuation; natural boundary; cyclotomic polynomial; rational point on a toric variety},
language = {eng},
number = {2},
pages = {225-265},
publisher = {Société mathématique de France},
title = {Extension of Estermann’s theorem to Euler products associated to a multivariate polynomial},
url = {http://eudml.org/doc/272653},
volume = {141},
year = {2013},
}

TY - JOUR
AU - Delabarre, Ludovic
TI - Extension of Estermann’s theorem to Euler products associated to a multivariate polynomial
JO - Bulletin de la Société Mathématique de France
PY - 2013
PB - Société mathématique de France
VL - 141
IS - 2
SP - 225
EP - 265
AB - Given a multivariate polynomial $h\left(X_1,\dots ,X_n\right)$ with integral coefficients verifying an hypothesis of analytic regularity (and satisfying $h(\textbf {0})=1$), we determine the maximal domain of meromorphy of the Euler product $\prod _{p \ \textrm {prime}}h\left(p^{-s_1},\dots ,p^{-s_n}\right)$ and the natural boundary is precisely described when it exists. In this way we extend a well known result for one variable polynomials due to Estermann from 1928. As an application, we calculate the natural boundary of the multivariate Euler products associated to a family of toric varieties.
LA - eng
KW - multivariables Euler products; meromorphic continuation; natural boundary; cyclotomic polynomial; rational point on a toric variety
UR - http://eudml.org/doc/272653
ER -

References

top
  1. [1] S. S. Abhyankar – Local analytic geometry, Pure and Applied Mathematics, Vol. XIV, Academic Press. MR175897
  2. [2] G. Bhowmik, D. Essouabri & B. Lichtin – « Meromorphic continuation of multivariable euler products », Forum Math. 19, p. 1111–1139. Zbl1181.11057MR2367957
  3. [3] R. de la Bretèche – « Sur le nombre de points de hauteur bornée d’une certaine surface cubique singulière », Astérisque 251, p. 51–77, Nombre et répartition de points de hauteur bornée (Paris, 1996). MR1679839
  4. [4] A. Chenciner – Courbes algébriques planes, Publications Mathématiques de l’Université Paris VII, vol. 4, Université de Paris VII U.E.R. de Mathématiques. 
  5. [5] G. Dahlquist – « On the analytic continuation of eulerian products », Ark. Mat. 1, p. 533–554. Zbl0046.27205MR49298
  6. [6] L. Delabarre – « On the domain of meromorphy of a multivariate Euler product of Igusa type », Forum Mathematicum, doi://10.1515/forum-2011-0092. 
  7. [7] T. Estermann – « On certain functions represented by dirichlet series », Proc. London Math. Soc. 27, p. 435–448. Zbl54.0366.03MR1575403
  8. [8] N. Kurokawa – « On the meromorphy of euler products. i », Proc. London Math. Soc. 53, p. 1–47. Zbl0595.10031MR842154
  9. [9] —, « On the meromorphy of euler products. ii », Proc. London Math. Soc. 53, p. 209–236. Zbl0609.10020MR850219
  10. [10] N. Kurokawa & H. Ochiai – « A multivariable euler product of igusa type and its applications », J. Number Theory 129, p. 1919–1930. Zbl1176.11065MR2522714
  11. [11] C. Laurent-Thiébaut – Théorie des fonctions holomorphes de plusieurs variables, Savoirs Actuels, InterÉditions. 
  12. [12] B. Z. Moroz – « On a class of dirichlet series associated to the ring of representations of a weil group », Proc. London Math. Soc. 56, p. 209–228. Zbl0608.12014MR922653
  13. [13] R. M. Range – « Extension phenomena in multidimensional complex analysis: correction of the historical record », Math. Intelligencer 24, p. 4–12. MR1907191
  14. [14] M. du Sautoy & F. Grunewald – « Zeta functions of groups: zeros and friendly ghosts », Amer. J. Math. 124, p. 1–48. Zbl1020.11058MR1878998
  15. [15] M. du Sautoy & L. Woodward – Zeta functions of groups and rings, Lecture Notes in Math., vol. 1925, Springer. MR2371185
  16. [16] P. Swinnerton-Dyer & R. de la Bretèche – « Fonction zêta des hauteurs associée à une certaine surface cubique », Bull. Soc. Math. France 135, p. 65–92. Zbl1207.11068

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.