Extremal Kähler metrics on blow-ups of parabolic ruled surfaces
Bulletin de la Société Mathématique de France (2013)
- Volume: 141, Issue: 3, page 481-516
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topTipler, Carl. "Extremal Kähler metrics on blow-ups of parabolic ruled surfaces." Bulletin de la Société Mathématique de France 141.3 (2013): 481-516. <http://eudml.org/doc/272664>.
@article{Tipler2013,
abstract = {New examples of extremal Kähler metrics are given on blow-ups of parabolic ruled surfaces. The method used is based on the gluing construction of Arezzo, Pacard and Singer [5]. This enables to endow ruled surfaces of the form $¶(\mathcal \{O\}\oplus L)$ with special parabolic structures such that the associated iterated blow-up admits an extremal metric of non-constant scalar curvature.},
author = {Tipler, Carl},
journal = {Bulletin de la Société Mathématique de France},
keywords = {extremal kähler metrics; Hirzebruch-Jung singularities; resolution; iterated blow-ups; parabolic structures},
language = {eng},
number = {3},
pages = {481-516},
publisher = {Société mathématique de France},
title = {Extremal Kähler metrics on blow-ups of parabolic ruled surfaces},
url = {http://eudml.org/doc/272664},
volume = {141},
year = {2013},
}
TY - JOUR
AU - Tipler, Carl
TI - Extremal Kähler metrics on blow-ups of parabolic ruled surfaces
JO - Bulletin de la Société Mathématique de France
PY - 2013
PB - Société mathématique de France
VL - 141
IS - 3
SP - 481
EP - 516
AB - New examples of extremal Kähler metrics are given on blow-ups of parabolic ruled surfaces. The method used is based on the gluing construction of Arezzo, Pacard and Singer [5]. This enables to endow ruled surfaces of the form $¶(\mathcal {O}\oplus L)$ with special parabolic structures such that the associated iterated blow-up admits an extremal metric of non-constant scalar curvature.
LA - eng
KW - extremal kähler metrics; Hirzebruch-Jung singularities; resolution; iterated blow-ups; parabolic structures
UR - http://eudml.org/doc/272664
ER -
References
top- [1] M. Abreu – « Kähler metrics on toric orbifolds », J. Differential Geom.58 (2001), p. 151–187. Zbl1035.53055MR1895351
- [2] V. Apostolov, D. M. J. Calderbank, P. Gauduchon & C. W. Tønnesen-Friedman – « Extremal Kähler metrics on projective bundles over a curve », Adv. Math.227 (2011), p. 2385–2424. Zbl1232.32011MR2807093
- [3] C. Arezzo & F. Pacard – « Blowing up and desingularizing constant scalar curvature Kähler manifolds », Acta Math.196 (2006), p. 179–228. Zbl1123.53036MR2275832
- [4] —, « Blowing up Kähler manifolds with constant scalar curvature. II », Ann. of Math.170 (2009), p. 685–738. Zbl1202.53069MR2552105
- [5] C. Arezzo, F. Pacard & M. Singer – « Extremal metrics on blowups », Duke Math. J.157 (2011), p. 1–51. MR2783927
- [6] W. Barth, C. Peters & A. Van de Ven – Compact complex surfaces, Ergebn. Math. Grenzg., vol. 4, Springer, 1984. MR749574
- [7] R. L. Bryant – « Bochner-Kähler metrics », J. Amer. Math. Soc.14 (2001), p. 623–715. MR1824987
- [8] E. Calabi – « Extremal Kähler metrics. II », in Differential geometry and complex analysis, Springer, 1985, p. 95–114. MR780039
- [9] D. M. J. Calderbank & M. A. Singer – « Einstein metrics and complex singularities », Invent. Math.156 (2004), p. 405–443. Zbl1061.53026MR2052611
- [10] S. K. Donaldson – « Scalar curvature and stability of toric varieties », J. Differential Geom.62 (2002), p. 289–349. Zbl1074.53059MR1988506
- [11] W. Fulton – Introduction to toric varieties, Annals of Math. Studies, vol. 131, Princeton Univ. Press, 1993. MR1234037
- [12] A. Futaki & T. Mabuchi – « Bilinear forms and extremal Kähler vector fields associated with Kähler classes », Math. Ann.301 (1995), p. 199–210. Zbl0831.53042MR1314584
- [13] P. Gauduchon – « Calabi’s extremal metrics: An elementary introduction », book in preparation.
- [14] D. D. Joyce – Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford Univ. Press, 2000. Zbl1027.53052MR1787733
- [15] C. LeBrun & S. R. Simanca – « Extremal Kähler metrics and complex deformation theory », Geom. Funct. Anal.4 (1994), p. 298–336. MR1274118
- [16] E. Legendre – « Toric geometry of convex quadrilaterals », J. Symplectic Geom.9 (2011), p. 343–385. Zbl1233.14032MR2817779
- [17] A. Lichnerowicz – Géométrie des groupes de transformations, Travaux et Recherches Mathématiques, III. Dunod, Paris, 1958. MR124009
- [18] T. Mabuchi – « K-stability of constant scalar curvature polarization », preprint arXiv:0812.4093.
- [19] V. B. Mehta & C. S. Seshadri – « Moduli of vector bundles on curves with parabolic structures », Math. Ann.248 (1980), p. 205–239. Zbl0454.14006MR575939
- [20] Y. Rollin & M. Singer – « Non-minimal scalar-flat Kähler surfaces and parabolic stability », Invent. Math.162 (2005), p. 235–270. Zbl1083.32021MR2199006
- [21] —, « Constant scalar curvature Kähler surfaces and parabolic polystability », J. Geom. Anal.19 (2009), p. 107–136. Zbl1204.53062MR2465299
- [22] J. Ross & R. Thomas – « An obstruction to the existence of constant scalar curvature Kähler metrics », J. Differential Geom.72 (2006), p. 429–466. Zbl1125.53057MR2219940
- [23] —, « Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics », J. Differential Geom.88 (2011), p. 109–159. Zbl1244.32013MR2819757
- [24] J. Stoppa & G. Székelyhidi – « Relative K-stability of extremal metrics », J. Eur. Math. Soc. (JEMS) 13 (2011), p. 899–909. MR2800479
- [25] G. Székelyhidi – « Extremal metrics and -stability », Bull. Lond. Math. Soc.39 (2007), p. 76–84. MR2303522
- [26] —, « The Calabi functional on a ruled surface », Ann. Sci. Éc. Norm. Supér. 42 (2009), p. 837–856. Zbl1187.58020MR2571959
- [27] —, « On blowing up extremal Kähler manifolds », Duke Math. J.161 (2012), p. 1411–1453. Zbl1259.58002MR2931272
- [28] G. Tian – « Kähler-Einstein metrics with positive scalar curvature », Invent. Math.130 (1997), p. 1–37. Zbl0892.53027MR1471884
- [29] C. W. Tønnesen-Friedman – « Extremal Kähler metrics on minimal ruled surfaces », J. reine angew. Math. 502 (1998), p. 175–197. Zbl0921.53033MR1647571
- [30] S.-T. Yau – « Open problems in geometry », in Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., 1993, p. 1–28. MR1216573
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.