Extremal Kähler metrics on blow-ups of parabolic ruled surfaces

Carl Tipler

Bulletin de la Société Mathématique de France (2013)

  • Volume: 141, Issue: 3, page 481-516
  • ISSN: 0037-9484

Abstract

top
New examples of extremal Kähler metrics are given on blow-ups of parabolic ruled surfaces. The method used is based on the gluing construction of Arezzo, Pacard and Singer [5]. This enables to endow ruled surfaces of the form ( 𝒪 L ) with special parabolic structures such that the associated iterated blow-up admits an extremal metric of non-constant scalar curvature.

How to cite

top

Tipler, Carl. "Extremal Kähler metrics on blow-ups of parabolic ruled surfaces." Bulletin de la Société Mathématique de France 141.3 (2013): 481-516. <http://eudml.org/doc/272664>.

@article{Tipler2013,
abstract = {New examples of extremal Kähler metrics are given on blow-ups of parabolic ruled surfaces. The method used is based on the gluing construction of Arezzo, Pacard and Singer [5]. This enables to endow ruled surfaces of the form $¶(\mathcal \{O\}\oplus L)$ with special parabolic structures such that the associated iterated blow-up admits an extremal metric of non-constant scalar curvature.},
author = {Tipler, Carl},
journal = {Bulletin de la Société Mathématique de France},
keywords = {extremal kähler metrics; Hirzebruch-Jung singularities; resolution; iterated blow-ups; parabolic structures},
language = {eng},
number = {3},
pages = {481-516},
publisher = {Société mathématique de France},
title = {Extremal Kähler metrics on blow-ups of parabolic ruled surfaces},
url = {http://eudml.org/doc/272664},
volume = {141},
year = {2013},
}

TY - JOUR
AU - Tipler, Carl
TI - Extremal Kähler metrics on blow-ups of parabolic ruled surfaces
JO - Bulletin de la Société Mathématique de France
PY - 2013
PB - Société mathématique de France
VL - 141
IS - 3
SP - 481
EP - 516
AB - New examples of extremal Kähler metrics are given on blow-ups of parabolic ruled surfaces. The method used is based on the gluing construction of Arezzo, Pacard and Singer [5]. This enables to endow ruled surfaces of the form $¶(\mathcal {O}\oplus L)$ with special parabolic structures such that the associated iterated blow-up admits an extremal metric of non-constant scalar curvature.
LA - eng
KW - extremal kähler metrics; Hirzebruch-Jung singularities; resolution; iterated blow-ups; parabolic structures
UR - http://eudml.org/doc/272664
ER -

References

top
  1. [1] M. Abreu – « Kähler metrics on toric orbifolds », J. Differential Geom.58 (2001), p. 151–187. Zbl1035.53055MR1895351
  2. [2] V. Apostolov, D. M. J. Calderbank, P. Gauduchon & C. W. Tønnesen-Friedman – « Extremal Kähler metrics on projective bundles over a curve », Adv. Math.227 (2011), p. 2385–2424. Zbl1232.32011MR2807093
  3. [3] C. Arezzo & F. Pacard – « Blowing up and desingularizing constant scalar curvature Kähler manifolds », Acta Math.196 (2006), p. 179–228. Zbl1123.53036MR2275832
  4. [4] —, « Blowing up Kähler manifolds with constant scalar curvature. II », Ann. of Math.170 (2009), p. 685–738. Zbl1202.53069MR2552105
  5. [5] C. Arezzo, F. Pacard & M. Singer – « Extremal metrics on blowups », Duke Math. J.157 (2011), p. 1–51. MR2783927
  6. [6] W. Barth, C. Peters & A. Van de Ven – Compact complex surfaces, Ergebn. Math. Grenzg., vol. 4, Springer, 1984. MR749574
  7. [7] R. L. Bryant – « Bochner-Kähler metrics », J. Amer. Math. Soc.14 (2001), p. 623–715. MR1824987
  8. [8] E. Calabi – « Extremal Kähler metrics. II », in Differential geometry and complex analysis, Springer, 1985, p. 95–114. MR780039
  9. [9] D. M. J. Calderbank & M. A. Singer – « Einstein metrics and complex singularities », Invent. Math.156 (2004), p. 405–443. Zbl1061.53026MR2052611
  10. [10] S. K. Donaldson – « Scalar curvature and stability of toric varieties », J. Differential Geom.62 (2002), p. 289–349. Zbl1074.53059MR1988506
  11. [11] W. Fulton – Introduction to toric varieties, Annals of Math. Studies, vol. 131, Princeton Univ. Press, 1993. MR1234037
  12. [12] A. Futaki & T. Mabuchi – « Bilinear forms and extremal Kähler vector fields associated with Kähler classes », Math. Ann.301 (1995), p. 199–210. Zbl0831.53042MR1314584
  13. [13] P. Gauduchon – « Calabi’s extremal metrics: An elementary introduction », book in preparation. 
  14. [14] D. D. Joyce – Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford Univ. Press, 2000. Zbl1027.53052MR1787733
  15. [15] C. LeBrun & S. R. Simanca – « Extremal Kähler metrics and complex deformation theory », Geom. Funct. Anal.4 (1994), p. 298–336. MR1274118
  16. [16] E. Legendre – « Toric geometry of convex quadrilaterals », J. Symplectic Geom.9 (2011), p. 343–385. Zbl1233.14032MR2817779
  17. [17] A. Lichnerowicz – Géométrie des groupes de transformations, Travaux et Recherches Mathématiques, III. Dunod, Paris, 1958. MR124009
  18. [18] T. Mabuchi – « K-stability of constant scalar curvature polarization », preprint arXiv:0812.4093. 
  19. [19] V. B. Mehta & C. S. Seshadri – « Moduli of vector bundles on curves with parabolic structures », Math. Ann.248 (1980), p. 205–239. Zbl0454.14006MR575939
  20. [20] Y. Rollin & M. Singer – « Non-minimal scalar-flat Kähler surfaces and parabolic stability », Invent. Math.162 (2005), p. 235–270. Zbl1083.32021MR2199006
  21. [21] —, « Constant scalar curvature Kähler surfaces and parabolic polystability », J. Geom. Anal.19 (2009), p. 107–136. Zbl1204.53062MR2465299
  22. [22] J. Ross & R. Thomas – « An obstruction to the existence of constant scalar curvature Kähler metrics », J. Differential Geom.72 (2006), p. 429–466. Zbl1125.53057MR2219940
  23. [23] —, « Weighted projective embeddings, stability of orbifolds, and constant scalar curvature Kähler metrics », J. Differential Geom.88 (2011), p. 109–159. Zbl1244.32013MR2819757
  24. [24] J. Stoppa & G. Székelyhidi – « Relative K-stability of extremal metrics », J. Eur. Math. Soc. (JEMS) 13 (2011), p. 899–909. MR2800479
  25. [25] G. Székelyhidi – « Extremal metrics and K -stability », Bull. Lond. Math. Soc.39 (2007), p. 76–84. MR2303522
  26. [26] —, « The Calabi functional on a ruled surface », Ann. Sci. Éc. Norm. Supér. 42 (2009), p. 837–856. Zbl1187.58020MR2571959
  27. [27] —, « On blowing up extremal Kähler manifolds », Duke Math. J.161 (2012), p. 1411–1453. Zbl1259.58002MR2931272
  28. [28] G. Tian – « Kähler-Einstein metrics with positive scalar curvature », Invent. Math.130 (1997), p. 1–37. Zbl0892.53027MR1471884
  29. [29] C. W. Tønnesen-Friedman – « Extremal Kähler metrics on minimal ruled surfaces », J. reine angew. Math. 502 (1998), p. 175–197. Zbl0921.53033MR1647571
  30. [30] S.-T. Yau – « Open problems in geometry », in Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., 1993, p. 1–28. MR1216573

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.