The Calabi functional on a ruled surface

Gábor Székelyhidi

Annales scientifiques de l'École Normale Supérieure (2009)

  • Volume: 42, Issue: 5, page 837-856
  • ISSN: 0012-9593

Abstract

top
We study the Calabi functional on a ruled surface over a genus two curve. For polarizations which do not admit an extremal metric we describe the behavior of a minimizing sequence splitting the manifold into pieces. We also show that the Calabi flow starting from a metric with suitable symmetry gives such a minimizing sequence.

How to cite

top

Székelyhidi, Gábor. "The Calabi functional on a ruled surface." Annales scientifiques de l'École Normale Supérieure 42.5 (2009): 837-856. <http://eudml.org/doc/272158>.

@article{Székelyhidi2009,
abstract = {We study the Calabi functional on a ruled surface over a genus two curve. For polarizations which do not admit an extremal metric we describe the behavior of a minimizing sequence splitting the manifold into pieces. We also show that the Calabi flow starting from a metric with suitable symmetry gives such a minimizing sequence.},
author = {Székelyhidi, Gábor},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Calabi functional; Calabi flow},
language = {eng},
number = {5},
pages = {837-856},
publisher = {Société mathématique de France},
title = {The Calabi functional on a ruled surface},
url = {http://eudml.org/doc/272158},
volume = {42},
year = {2009},
}

TY - JOUR
AU - Székelyhidi, Gábor
TI - The Calabi functional on a ruled surface
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 5
SP - 837
EP - 856
AB - We study the Calabi functional on a ruled surface over a genus two curve. For polarizations which do not admit an extremal metric we describe the behavior of a minimizing sequence splitting the manifold into pieces. We also show that the Calabi flow starting from a metric with suitable symmetry gives such a minimizing sequence.
LA - eng
KW - Calabi functional; Calabi flow
UR - http://eudml.org/doc/272158
ER -

References

top
  1. [1] V. Apostolov, D. M. J. Calderbank, P. Gauduchon & C. W. Tønnesen-Friedman, Hamiltonian 2-forms in Kähler geometry. III. Extremal metrics and stability, Invent. Math. 173 (2008), 547–601. Zbl1145.53055MR2425136
  2. [2] T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math.102 (1978), 63–95. Zbl0374.53022MR494932
  3. [3] E. Calabi, Extremal Kähler metrics, in Seminar on Differential Geometry, Princeton (S. T. Yau, éd.), 1982. Zbl0574.58006
  4. [4] X. Chen, Calabi flow in Riemann surfaces revisited: a new point of view, Int. Math. Res. Not.2001 (2001), 275–297. Zbl1078.53065MR1820328
  5. [5] X. Chen, Space of Kähler metrics. III. On the lower bound of the Calabi energy and geodesic distance, Invent. Math. 175 (2009), 453–503. Zbl1163.58005MR2471594
  6. [6] X. Chen & W. Y. He, On the Calabi flow, Amer. J. Math.130 (2008), 539–570. Zbl1204.53050MR2405167
  7. [7] X. Chen & W. Y. He, The Calabi flow on toric Fano surfaces, preprint arXiv:0807.3984. Zbl1221.53103MR2405167
  8. [8] P. T. Chruściel, Semi-global existence and convergence of solutions of the Robinson-Trautman ( 2 -dimensional Calabi) equation, Comm. Math. Phys.137 (1991), 289–313. Zbl0729.53071MR1101689
  9. [9] S. K. Donaldson, Remarks on gauge theory, complex geometry and 4 -manifold topology, in Fields Medallists’ lectures, World Sci. Ser. 20th Century Math. 5, World Sci. Publ., River Edge, NJ, 1997, 384–403. MR1622931
  10. [10] S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom.62 (2002), 289–349. Zbl1074.53059MR1988506
  11. [11] S. K. Donaldson, Conjectures in Kähler geometry, in Strings and geometry, Clay Math. Proc. 3, Amer. Math. Soc., 2004, 71–78. Zbl1161.32010MR2103718
  12. [12] S. K. Donaldson, Lower bounds on the Calabi functional, J. Differential Geom.70 (2005), 453–472. Zbl1149.53042MR2192937
  13. [13] A. Fujiki, Moduli space of polarized algebraic manifolds and Kähler metrics, Sugaku Expositions5 (1992), 173–191. Zbl0796.32009MR1207204
  14. [14] D. Guan, Extremal solitons and exponential C convergence of the modified Calabi flow on certain P 1 bundles, Pacific J. Math.233 (2007), 91–124. Zbl1154.53043MR2366370
  15. [15] A. D. Hwang, On the Calabi energy of extremal Kähler metrics, Internat. J. Math.6 (1995), 825–830. Zbl0846.53048MR1353997
  16. [16] A. D. Hwang & M. A. Singer, A momentum construction for circle-invariant Kähler metrics, Trans. Amer. Math. Soc.354 (2002), 2285–2325. Zbl0987.53032MR1885653
  17. [17] T. Mabuchi, Stability of extremal Kähler manifolds, Osaka J. Math.41 (2004), 563–582. Zbl1076.32017MR2107663
  18. [18] J. Ross & R. Thomas, An obstruction to the existence of constant scalar curvature Kähler metrics, J. Differential Geom.72 (2006), 429–466. Zbl1125.53057MR2219940
  19. [19] N. Sesum & G. Tian, Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman), J. Inst. Math. Jussieu7 (2008), 575–587. Zbl1147.53056MR2427424
  20. [20] M. Struwe, Curvature flows on surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci.1 (2002), 247–274. Zbl1150.53025MR1991140
  21. [21] G. Székelyhidi, Extremal metrics and K -stability, Thèse, Imperial College London, 2006, arXiv:math/0611002. Zbl1111.53057MR2303522
  22. [22] G. Székelyhidi, Extremal metrics and K -stability, Bull. Lond. Math. Soc.39 (2007), 76–84. Zbl1111.53057MR2303522
  23. [23] G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math.101 (1990), 101–172. Zbl0716.32019
  24. [24] G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math.130 (1997), 1–37. Zbl0892.53027
  25. [25] C. W. Tønnesen-Friedman, Extremal Kähler metrics on minimal ruled surfaces, J. reine angew. Math. 502 (1998), 175–197. Zbl0921.53033
  26. [26] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), 339–411. Zbl0369.53059
  27. [27] R. Ye, The logarithmic Sobolev inequality along the Ricci flow, preprint arXiv:0707.2424, 2007. 
  28. [28] Q. S. Zhang, A uniform Sobolev inequality under Ricci flow, Int. Math. Res. Not. IMRN 17 (2007), Art. ID rnm056. Zbl1141.53064

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.