The Calabi functional on a ruled surface
Annales scientifiques de l'École Normale Supérieure (2009)
- Volume: 42, Issue: 5, page 837-856
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topSzékelyhidi, Gábor. "The Calabi functional on a ruled surface." Annales scientifiques de l'École Normale Supérieure 42.5 (2009): 837-856. <http://eudml.org/doc/272158>.
@article{Székelyhidi2009,
abstract = {We study the Calabi functional on a ruled surface over a genus two curve. For polarizations which do not admit an extremal metric we describe the behavior of a minimizing sequence splitting the manifold into pieces. We also show that the Calabi flow starting from a metric with suitable symmetry gives such a minimizing sequence.},
author = {Székelyhidi, Gábor},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Calabi functional; Calabi flow},
language = {eng},
number = {5},
pages = {837-856},
publisher = {Société mathématique de France},
title = {The Calabi functional on a ruled surface},
url = {http://eudml.org/doc/272158},
volume = {42},
year = {2009},
}
TY - JOUR
AU - Székelyhidi, Gábor
TI - The Calabi functional on a ruled surface
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2009
PB - Société mathématique de France
VL - 42
IS - 5
SP - 837
EP - 856
AB - We study the Calabi functional on a ruled surface over a genus two curve. For polarizations which do not admit an extremal metric we describe the behavior of a minimizing sequence splitting the manifold into pieces. We also show that the Calabi flow starting from a metric with suitable symmetry gives such a minimizing sequence.
LA - eng
KW - Calabi functional; Calabi flow
UR - http://eudml.org/doc/272158
ER -
References
top- [1] V. Apostolov, D. M. J. Calderbank, P. Gauduchon & C. W. Tønnesen-Friedman, Hamiltonian 2-forms in Kähler geometry. III. Extremal metrics and stability, Invent. Math. 173 (2008), 547–601. Zbl1145.53055MR2425136
- [2] T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math.102 (1978), 63–95. Zbl0374.53022MR494932
- [3] E. Calabi, Extremal Kähler metrics, in Seminar on Differential Geometry, Princeton (S. T. Yau, éd.), 1982. Zbl0574.58006
- [4] X. Chen, Calabi flow in Riemann surfaces revisited: a new point of view, Int. Math. Res. Not.2001 (2001), 275–297. Zbl1078.53065MR1820328
- [5] X. Chen, Space of Kähler metrics. III. On the lower bound of the Calabi energy and geodesic distance, Invent. Math. 175 (2009), 453–503. Zbl1163.58005MR2471594
- [6] X. Chen & W. Y. He, On the Calabi flow, Amer. J. Math.130 (2008), 539–570. Zbl1204.53050MR2405167
- [7] X. Chen & W. Y. He, The Calabi flow on toric Fano surfaces, preprint arXiv:0807.3984. Zbl1221.53103MR2405167
- [8] P. T. Chruściel, Semi-global existence and convergence of solutions of the Robinson-Trautman (-dimensional Calabi) equation, Comm. Math. Phys.137 (1991), 289–313. Zbl0729.53071MR1101689
- [9] S. K. Donaldson, Remarks on gauge theory, complex geometry and -manifold topology, in Fields Medallists’ lectures, World Sci. Ser. 20th Century Math. 5, World Sci. Publ., River Edge, NJ, 1997, 384–403. MR1622931
- [10] S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom.62 (2002), 289–349. Zbl1074.53059MR1988506
- [11] S. K. Donaldson, Conjectures in Kähler geometry, in Strings and geometry, Clay Math. Proc. 3, Amer. Math. Soc., 2004, 71–78. Zbl1161.32010MR2103718
- [12] S. K. Donaldson, Lower bounds on the Calabi functional, J. Differential Geom.70 (2005), 453–472. Zbl1149.53042MR2192937
- [13] A. Fujiki, Moduli space of polarized algebraic manifolds and Kähler metrics, Sugaku Expositions5 (1992), 173–191. Zbl0796.32009MR1207204
- [14] D. Guan, Extremal solitons and exponential convergence of the modified Calabi flow on certain bundles, Pacific J. Math.233 (2007), 91–124. Zbl1154.53043MR2366370
- [15] A. D. Hwang, On the Calabi energy of extremal Kähler metrics, Internat. J. Math.6 (1995), 825–830. Zbl0846.53048MR1353997
- [16] A. D. Hwang & M. A. Singer, A momentum construction for circle-invariant Kähler metrics, Trans. Amer. Math. Soc.354 (2002), 2285–2325. Zbl0987.53032MR1885653
- [17] T. Mabuchi, Stability of extremal Kähler manifolds, Osaka J. Math.41 (2004), 563–582. Zbl1076.32017MR2107663
- [18] J. Ross & R. Thomas, An obstruction to the existence of constant scalar curvature Kähler metrics, J. Differential Geom.72 (2006), 429–466. Zbl1125.53057MR2219940
- [19] N. Sesum & G. Tian, Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman), J. Inst. Math. Jussieu7 (2008), 575–587. Zbl1147.53056MR2427424
- [20] M. Struwe, Curvature flows on surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci.1 (2002), 247–274. Zbl1150.53025MR1991140
- [21] G. Székelyhidi, Extremal metrics and -stability, Thèse, Imperial College London, 2006, arXiv:math/0611002. Zbl1111.53057MR2303522
- [22] G. Székelyhidi, Extremal metrics and -stability, Bull. Lond. Math. Soc.39 (2007), 76–84. Zbl1111.53057MR2303522
- [23] G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math.101 (1990), 101–172. Zbl0716.32019
- [24] G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math.130 (1997), 1–37. Zbl0892.53027
- [25] C. W. Tønnesen-Friedman, Extremal Kähler metrics on minimal ruled surfaces, J. reine angew. Math. 502 (1998), 175–197. Zbl0921.53033
- [26] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), 339–411. Zbl0369.53059
- [27] R. Ye, The logarithmic Sobolev inequality along the Ricci flow, preprint arXiv:0707.2424, 2007.
- [28] Q. S. Zhang, A uniform Sobolev inequality under Ricci flow, Int. Math. Res. Not. IMRN 17 (2007), Art. ID rnm056. Zbl1141.53064
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.