Natural endomorphisms of quasi-shuffle Hopf algebras
Jean-Christophe Novelli; Frédéric Patras; Jean-Yves Thibon
Bulletin de la Société Mathématique de France (2013)
- Volume: 141, Issue: 1, page 107-130
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topNovelli, Jean-Christophe, Patras, Frédéric, and Thibon, Jean-Yves. "Natural endomorphisms of quasi-shuffle Hopf algebras." Bulletin de la Société Mathématique de France 141.1 (2013): 107-130. <http://eudml.org/doc/272674>.
@article{Novelli2013,
abstract = {The Hopf algebra of word-quasi-symmetric functions ($\{\bf WQSym\}$), a noncommutative generalization of the Hopf algebra of quasi-symmetric functions, can be endowed with an internal product that has several compatibility properties with the other operations on $\{\bf WQSym\}$. This extends constructions familiar and central in the theory of free Lie algebras, noncommutative symmetric functions and their various applications fields, and allows to interpret $\{\bf WQSym\}$ as a convolution algebra of linear endomorphisms of quasi-shuffle algebras. We then use this interpretation to study the fine structure of quasi-shuffle algebras (MZVs, free Rota-Baxter algebras...). In particular, we compute their Adams operations and prove the existence of generalized Eulerian idempotents, that is, of a canonical left-inverse to the natural surjection map to their indecomposables, allowing for the combinatorial construction of free polynomial generators for these algebras.},
author = {Novelli, Jean-Christophe, Patras, Frédéric, Thibon, Jean-Yves},
journal = {Bulletin de la Société Mathématique de France},
keywords = {quasi-shuffle; word quasi-symmetric function; convolution; Hopf algebra; surjection; Adams operation; eulerian idempotent; multiple zeta values},
language = {eng},
number = {1},
pages = {107-130},
publisher = {Société mathématique de France},
title = {Natural endomorphisms of quasi-shuffle Hopf algebras},
url = {http://eudml.org/doc/272674},
volume = {141},
year = {2013},
}
TY - JOUR
AU - Novelli, Jean-Christophe
AU - Patras, Frédéric
AU - Thibon, Jean-Yves
TI - Natural endomorphisms of quasi-shuffle Hopf algebras
JO - Bulletin de la Société Mathématique de France
PY - 2013
PB - Société mathématique de France
VL - 141
IS - 1
SP - 107
EP - 130
AB - The Hopf algebra of word-quasi-symmetric functions (${\bf WQSym}$), a noncommutative generalization of the Hopf algebra of quasi-symmetric functions, can be endowed with an internal product that has several compatibility properties with the other operations on ${\bf WQSym}$. This extends constructions familiar and central in the theory of free Lie algebras, noncommutative symmetric functions and their various applications fields, and allows to interpret ${\bf WQSym}$ as a convolution algebra of linear endomorphisms of quasi-shuffle algebras. We then use this interpretation to study the fine structure of quasi-shuffle algebras (MZVs, free Rota-Baxter algebras...). In particular, we compute their Adams operations and prove the existence of generalized Eulerian idempotents, that is, of a canonical left-inverse to the natural surjection map to their indecomposables, allowing for the combinatorial construction of free polynomial generators for these algebras.
LA - eng
KW - quasi-shuffle; word quasi-symmetric function; convolution; Hopf algebra; surjection; Adams operation; eulerian idempotent; multiple zeta values
UR - http://eudml.org/doc/272674
ER -
References
top- [1] M. Aguiar – « Pre-Poisson algebras », Lett. Math. Phys.54 (2000), p. 263–277. Zbl1032.17038MR1846958
- [2] K. S. Brown – « Semigroups, rings, and Markov chains », J. Theoret. Probab.13 (2000), p. 871–938. MR1785534
- [3] P. Cartier – « On the structure of free Baxter algebras », Advances in Math.9 (1972), p. 253–265. MR338040
- [4] F. Chapoton, F. Hivert, J.-C. Novelli & J.-Y. Thibon – « An operational calculus for the mould operad », Int. Math. Res. Not. 2008 (2008), Art. ID rnn018, 22. Zbl1146.18301MR2429249
- [5] C. Costermans & H. N. Minh – « Noncommutative algebra, multiple harmonic sums and applications in discrete probability », J. Symbolic Comput.44 (2009), p. 801–817. Zbl1179.11030MR2522583
- [6] G. Duchamp, F. Hivert, J.-C. Novelli & J.-Y. Thibon – « Noncommutative symmetric functions VII: free quasi-symmetric functions revisited », Ann. Comb.15 (2011), p. 655–673. Zbl1233.05200MR2854786
- [7] G. Duchamp, F. Hivert & J.-Y. Thibon – « Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras », Internat. J. Algebra Comput.12 (2002), p. 671–717. Zbl1027.05107MR1935570
- [8] K. Ebrahimi-Fard, J. M. Gracia-Bondía & F. Patras – « A Lie theoretic approach to renormalization », Comm. Math. Phys.276 (2007), p. 519–549. Zbl1136.81395MR2346399
- [9] K. Ebrahimi-Fard & L. Guo – « Mixable shuffles, quasi-shuffles and Hopf algebras », J. Algebraic Combin.24 (2006), p. 83–101. Zbl1103.16025MR2245782
- [10] K. Ebrahimi-Fard, L. Guo & D. Kreimer – « Spitzer’s identity and the algebraic Birkhoff decomposition in pQFT », J. Phys. A37 (2004), p. 11037–11052. Zbl1062.81113MR2100158
- [11] I. M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh & J.-Y. Thibon – « Noncommutative symmetric functions », Adv. Math.112 (1995), p. 218–348. Zbl0831.05063MR1327096
- [12] L. Guo – An introduction to Rota-Baxter algebra, Surveys of Modern Mathematics, vol. 4, International Press, 2010. MR3025028
- [13] L. Guo & W. Keigher – « Baxter algebras and shuffle products », Adv. Math.150 (2000), p. 117–149. MR1744484
- [14] F. Hivert – « Combinatoire des fonctions quasi-symétriques », thèse de doctorat, Université de Marne-la-Vallée, 1999.
- [15] —, « Hecke algebras, difference operators, and quasi-symmetric functions », Adv. Math.155 (2000), p. 181–238. Zbl0990.05129MR1794711
- [16] F. Hivert, J.-C. Novelli & J.-Y. Thibon – « Commutative combinatorial Hopf algebras », J. Algebraic Combin.28 (2008), p. 65–95. MR2420780
- [17] M. E. Hoffman – « Quasi-shuffle products », J. Algebraic Combin.11 (2000), p. 49–68. Zbl0959.16021MR1747062
- [18] K. Ihara, M. Kaneko & D. Zagier – « Derivation and double shuffle relations for multiple zeta values », Compos. Math.142 (2006), p. 307–338. Zbl1186.11053MR2218898
- [19] D. Krob, B. Leclerc & J.-Y. Thibon – « Noncommutative symmetric functions. II. Transformations of alphabets », Internat. J. Algebra Comput.7 (1997), p. 181–264. Zbl0907.05055MR1433196
- [20] J.-L. Loday – « On the algebra of quasi-shuffles », Manuscripta Math.123 (2007), p. 79–93. Zbl1126.16029MR2300061
- [21] C. Malvenuto & C. Reutenauer – « Duality between quasi-symmetric functions and the Solomon descent algebra », J. Algebra177 (1995), p. 967–982. Zbl0838.05100MR1358493
- [22] J.-C. Novelli & J.-Y. Thibon – « Polynomial realizations of some trialgebras », in Proceedings of FPSAC 2006 (San Diego), 2006.
- [23] —, « Hopf algebras and dendriform structures arising from parking functions », Fund. Math.193 (2007), p. 189–241. Zbl1127.16033MR2289770
- [24] —, « Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions », Discr. Math. (2010), doi://10.1016/j.disc.2010.09.008. Zbl1231.05278
- [25] F. Patras – « Homothéties simpliciales », thèse de doctorat, Université Denis Diderot, 1992.
- [26] —, « La décomposition en poids des algèbres de Hopf », Ann. Inst. Fourier (Grenoble) 43 (1993), p. 1067–1087. MR1252938
- [27] —, « L’algèbre des descentes d’une bigèbre graduée », J. Algebra170 (1994), p. 547–566. MR1302855
- [28] F. Patras & M. Schocker – « Twisted descent algebras and the Solomon-Tits algebra », Adv. Math.199 (2006), p. 151–184. Zbl1154.16029MR2187402
- [29] G. Racinet – « Doubles mélanges des polylogarithmes multiples aux racines de l’unité », Publ. Math. I.H.É.S. 95 (2002), p. 185–231. MR1953193
- [30] C. Reutenauer – Free Lie algebras, London Mathematical Society Monographs, vol. 7, Oxford Univ. Press, 1993. MR1231799
- [31] M. Schocker – « The module structure of the Solomon-Tits algebra of the symmetric group », J. Algebra301 (2006), p. 554–586. Zbl1155.20012MR2236757
- [32] L. Solomon – « On the Poincaré-Birkhoff-Witt theorem », J. Combinatorial Theory4 (1968), p. 363–375. MR219586
- [33] —, « A Mackey formula in the group ring of a Coxeter group », J. Algebra41 (1976), p. 255–264. MR444756
- [34] J.-Y. Thibon & B.-C.-V. Ung – « Quantum quasi-symmetric functions and Hecke algebras », J. Phys. A 29 (1996), p. 7337–7348. Zbl0962.05060MR1421942
- [35] J. Tits – « Two properties of Coxeter complexes », J. Algebra 41 (1976), p. 265–268, Appendix to [33]. MR444757
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.