Natural endomorphisms of quasi-shuffle Hopf algebras

Jean-Christophe Novelli; Frédéric Patras; Jean-Yves Thibon

Bulletin de la Société Mathématique de France (2013)

  • Volume: 141, Issue: 1, page 107-130
  • ISSN: 0037-9484

Abstract

top
The Hopf algebra of word-quasi-symmetric functions ( 𝐖𝐐𝐒𝐲𝐦 ), a noncommutative generalization of the Hopf algebra of quasi-symmetric functions, can be endowed with an internal product that has several compatibility properties with the other operations on 𝐖𝐐𝐒𝐲𝐦 . This extends constructions familiar and central in the theory of free Lie algebras, noncommutative symmetric functions and their various applications fields, and allows to interpret 𝐖𝐐𝐒𝐲𝐦 as a convolution algebra of linear endomorphisms of quasi-shuffle algebras. We then use this interpretation to study the fine structure of quasi-shuffle algebras (MZVs, free Rota-Baxter algebras...). In particular, we compute their Adams operations and prove the existence of generalized Eulerian idempotents, that is, of a canonical left-inverse to the natural surjection map to their indecomposables, allowing for the combinatorial construction of free polynomial generators for these algebras.

How to cite

top

Novelli, Jean-Christophe, Patras, Frédéric, and Thibon, Jean-Yves. "Natural endomorphisms of quasi-shuffle Hopf algebras." Bulletin de la Société Mathématique de France 141.1 (2013): 107-130. <http://eudml.org/doc/272674>.

@article{Novelli2013,
abstract = {The Hopf algebra of word-quasi-symmetric functions ($\{\bf WQSym\}$), a noncommutative generalization of the Hopf algebra of quasi-symmetric functions, can be endowed with an internal product that has several compatibility properties with the other operations on $\{\bf WQSym\}$. This extends constructions familiar and central in the theory of free Lie algebras, noncommutative symmetric functions and their various applications fields, and allows to interpret $\{\bf WQSym\}$ as a convolution algebra of linear endomorphisms of quasi-shuffle algebras. We then use this interpretation to study the fine structure of quasi-shuffle algebras (MZVs, free Rota-Baxter algebras...). In particular, we compute their Adams operations and prove the existence of generalized Eulerian idempotents, that is, of a canonical left-inverse to the natural surjection map to their indecomposables, allowing for the combinatorial construction of free polynomial generators for these algebras.},
author = {Novelli, Jean-Christophe, Patras, Frédéric, Thibon, Jean-Yves},
journal = {Bulletin de la Société Mathématique de France},
keywords = {quasi-shuffle; word quasi-symmetric function; convolution; Hopf algebra; surjection; Adams operation; eulerian idempotent; multiple zeta values},
language = {eng},
number = {1},
pages = {107-130},
publisher = {Société mathématique de France},
title = {Natural endomorphisms of quasi-shuffle Hopf algebras},
url = {http://eudml.org/doc/272674},
volume = {141},
year = {2013},
}

TY - JOUR
AU - Novelli, Jean-Christophe
AU - Patras, Frédéric
AU - Thibon, Jean-Yves
TI - Natural endomorphisms of quasi-shuffle Hopf algebras
JO - Bulletin de la Société Mathématique de France
PY - 2013
PB - Société mathématique de France
VL - 141
IS - 1
SP - 107
EP - 130
AB - The Hopf algebra of word-quasi-symmetric functions (${\bf WQSym}$), a noncommutative generalization of the Hopf algebra of quasi-symmetric functions, can be endowed with an internal product that has several compatibility properties with the other operations on ${\bf WQSym}$. This extends constructions familiar and central in the theory of free Lie algebras, noncommutative symmetric functions and their various applications fields, and allows to interpret ${\bf WQSym}$ as a convolution algebra of linear endomorphisms of quasi-shuffle algebras. We then use this interpretation to study the fine structure of quasi-shuffle algebras (MZVs, free Rota-Baxter algebras...). In particular, we compute their Adams operations and prove the existence of generalized Eulerian idempotents, that is, of a canonical left-inverse to the natural surjection map to their indecomposables, allowing for the combinatorial construction of free polynomial generators for these algebras.
LA - eng
KW - quasi-shuffle; word quasi-symmetric function; convolution; Hopf algebra; surjection; Adams operation; eulerian idempotent; multiple zeta values
UR - http://eudml.org/doc/272674
ER -

References

top
  1. [1] M. Aguiar – « Pre-Poisson algebras », Lett. Math. Phys.54 (2000), p. 263–277. Zbl1032.17038MR1846958
  2. [2] K. S. Brown – « Semigroups, rings, and Markov chains », J. Theoret. Probab.13 (2000), p. 871–938. MR1785534
  3. [3] P. Cartier – « On the structure of free Baxter algebras », Advances in Math.9 (1972), p. 253–265. MR338040
  4. [4] F. Chapoton, F. Hivert, J.-C. Novelli & J.-Y. Thibon – « An operational calculus for the mould operad », Int. Math. Res. Not. 2008 (2008), Art. ID rnn018, 22. Zbl1146.18301MR2429249
  5. [5] C. Costermans & H. N. Minh – « Noncommutative algebra, multiple harmonic sums and applications in discrete probability », J. Symbolic Comput.44 (2009), p. 801–817. Zbl1179.11030MR2522583
  6. [6] G. Duchamp, F. Hivert, J.-C. Novelli & J.-Y. Thibon – « Noncommutative symmetric functions VII: free quasi-symmetric functions revisited », Ann. Comb.15 (2011), p. 655–673. Zbl1233.05200MR2854786
  7. [7] G. Duchamp, F. Hivert & J.-Y. Thibon – « Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras », Internat. J. Algebra Comput.12 (2002), p. 671–717. Zbl1027.05107MR1935570
  8. [8] K. Ebrahimi-Fard, J. M. Gracia-Bondía & F. Patras – « A Lie theoretic approach to renormalization », Comm. Math. Phys.276 (2007), p. 519–549. Zbl1136.81395MR2346399
  9. [9] K. Ebrahimi-Fard & L. Guo – « Mixable shuffles, quasi-shuffles and Hopf algebras », J. Algebraic Combin.24 (2006), p. 83–101. Zbl1103.16025MR2245782
  10. [10] K. Ebrahimi-Fard, L. Guo & D. Kreimer – « Spitzer’s identity and the algebraic Birkhoff decomposition in pQFT », J. Phys. A37 (2004), p. 11037–11052. Zbl1062.81113MR2100158
  11. [11] I. M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V. S. Retakh & J.-Y. Thibon – « Noncommutative symmetric functions », Adv. Math.112 (1995), p. 218–348. Zbl0831.05063MR1327096
  12. [12] L. Guo – An introduction to Rota-Baxter algebra, Surveys of Modern Mathematics, vol. 4, International Press, 2010. MR3025028
  13. [13] L. Guo & W. Keigher – « Baxter algebras and shuffle products », Adv. Math.150 (2000), p. 117–149. MR1744484
  14. [14] F. Hivert – « Combinatoire des fonctions quasi-symétriques », thèse de doctorat, Université de Marne-la-Vallée, 1999. 
  15. [15] —, « Hecke algebras, difference operators, and quasi-symmetric functions », Adv. Math.155 (2000), p. 181–238. Zbl0990.05129MR1794711
  16. [16] F. Hivert, J.-C. Novelli & J.-Y. Thibon – « Commutative combinatorial Hopf algebras », J. Algebraic Combin.28 (2008), p. 65–95. MR2420780
  17. [17] M. E. Hoffman – « Quasi-shuffle products », J. Algebraic Combin.11 (2000), p. 49–68. Zbl0959.16021MR1747062
  18. [18] K. Ihara, M. Kaneko & D. Zagier – « Derivation and double shuffle relations for multiple zeta values », Compos. Math.142 (2006), p. 307–338. Zbl1186.11053MR2218898
  19. [19] D. Krob, B. Leclerc & J.-Y. Thibon – « Noncommutative symmetric functions. II. Transformations of alphabets », Internat. J. Algebra Comput.7 (1997), p. 181–264. Zbl0907.05055MR1433196
  20. [20] J.-L. Loday – « On the algebra of quasi-shuffles », Manuscripta Math.123 (2007), p. 79–93. Zbl1126.16029MR2300061
  21. [21] C. Malvenuto & C. Reutenauer – « Duality between quasi-symmetric functions and the Solomon descent algebra », J. Algebra177 (1995), p. 967–982. Zbl0838.05100MR1358493
  22. [22] J.-C. Novelli & J.-Y. Thibon – « Polynomial realizations of some trialgebras », in Proceedings of FPSAC 2006 (San Diego), 2006. 
  23. [23] —, « Hopf algebras and dendriform structures arising from parking functions », Fund. Math.193 (2007), p. 189–241. Zbl1127.16033MR2289770
  24. [24] —, « Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions », Discr. Math. (2010), doi://10.1016/j.disc.2010.09.008. Zbl1231.05278
  25. [25] F. Patras – « Homothéties simpliciales », thèse de doctorat, Université Denis Diderot, 1992. 
  26. [26] —, « La décomposition en poids des algèbres de Hopf », Ann. Inst. Fourier (Grenoble) 43 (1993), p. 1067–1087. MR1252938
  27. [27] —, « L’algèbre des descentes d’une bigèbre graduée », J. Algebra170 (1994), p. 547–566. MR1302855
  28. [28] F. Patras & M. Schocker – « Twisted descent algebras and the Solomon-Tits algebra », Adv. Math.199 (2006), p. 151–184. Zbl1154.16029MR2187402
  29. [29] G. Racinet – « Doubles mélanges des polylogarithmes multiples aux racines de l’unité », Publ. Math. I.H.É.S. 95 (2002), p. 185–231. MR1953193
  30. [30] C. Reutenauer – Free Lie algebras, London Mathematical Society Monographs, vol. 7, Oxford Univ. Press, 1993. MR1231799
  31. [31] M. Schocker – « The module structure of the Solomon-Tits algebra of the symmetric group », J. Algebra301 (2006), p. 554–586. Zbl1155.20012MR2236757
  32. [32] L. Solomon – « On the Poincaré-Birkhoff-Witt theorem », J. Combinatorial Theory4 (1968), p. 363–375. MR219586
  33. [33] —, « A Mackey formula in the group ring of a Coxeter group », J. Algebra41 (1976), p. 255–264. MR444756
  34. [34] J.-Y. Thibon & B.-C.-V. Ung – « Quantum quasi-symmetric functions and Hecke algebras », J. Phys. A 29 (1996), p. 7337–7348. Zbl0962.05060MR1421942
  35. [35] J. Tits – « Two properties of Coxeter complexes », J. Algebra 41 (1976), p. 265–268, Appendix to [33]. MR444757

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.