Perturbations of flexible Lattès maps

Xavier Buff; Thomas Gauthier

Bulletin de la Société Mathématique de France (2013)

  • Volume: 141, Issue: 4, page 603-614
  • ISSN: 0037-9484

Abstract

top
We prove that any Lattès map can be approximated by strictly postcritically finite rational maps which are not Lattès maps.

How to cite

top

Buff, Xavier, and Gauthier, Thomas. "Perturbations of flexible Lattès maps." Bulletin de la Société Mathématique de France 141.4 (2013): 603-614. <http://eudml.org/doc/272700>.

@article{Buff2013,
abstract = {We prove that any Lattès map can be approximated by strictly postcritically finite rational maps which are not Lattès maps.},
author = {Buff, Xavier, Gauthier, Thomas},
journal = {Bulletin de la Société Mathématique de France},
keywords = {flexible lattès maps; bifurcation measure; hyperbolic sets},
language = {eng},
number = {4},
pages = {603-614},
publisher = {Société mathématique de France},
title = {Perturbations of flexible Lattès maps},
url = {http://eudml.org/doc/272700},
volume = {141},
year = {2013},
}

TY - JOUR
AU - Buff, Xavier
AU - Gauthier, Thomas
TI - Perturbations of flexible Lattès maps
JO - Bulletin de la Société Mathématique de France
PY - 2013
PB - Société mathématique de France
VL - 141
IS - 4
SP - 603
EP - 614
AB - We prove that any Lattès map can be approximated by strictly postcritically finite rational maps which are not Lattès maps.
LA - eng
KW - flexible lattès maps; bifurcation measure; hyperbolic sets
UR - http://eudml.org/doc/272700
ER -

References

top
  1. [1] G. Bassanelli & F. Berteloot – « Bifurcation currents in holomorphic dynamics on k », J. reine angew. Math. 608 (2007), p. 201–235. Zbl1136.37025MR2339474
  2. [2] —, « Lyapunov exponents, bifurcation currents and laminations in bifurcation loci », Math. Ann.345 (2009), p. 1–23. Zbl1179.37067MR2520048
  3. [3] F. Berteloot – « Bifurcation currents in holomorphic families of rational maps », in Pluripotential Theory, Lecture Notes in Math., vol. 2075, Springer, 2013, p. 1–93. Zbl1280.37039MR3089068
  4. [4] X. Buff & A. Epstein – « Bifurcation measure and postcritically finite rational maps », in Complex dynamics, A K Peters, 2009, p. 491–512. Zbl1180.37056MR2508266
  5. [5] L. DeMarco – « Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity », Math. Ann.326 (2003), p. 43–73. Zbl1032.37029MR1981611
  6. [6] T. Gauthier – « Dimension de Hausdorff de lieux de bifurcations maximales en dynamique des fractions rationnelles », thèse de doctorat, Université Paul Sabatier, 2011, http://tel.archives-ouvertes.fr/tel-00646407. 
  7. [7] —, « Strong bifurcation loci of full Hausdorff dimension », Ann. Sci. Éc. Norm. Supér. 45 (2012), p. 947–984. Zbl1326.37036MR3075109
  8. [8] J. Milnor – « On Lattès maps », in Dynamics on the Riemann sphere, Eur. Math. Soc., Zürich, 2006, p. 9–43. Zbl1235.37015MR2348953
  9. [9] M. Shishikura – « The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets », Ann. of Math.147 (1998), p. 225–267. Zbl0922.58047MR1626737
  10. [10] M. Shishikura & T. Lei – « An alternative proof of Mañé’s theorem on non-expanding Julia sets », in The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge Univ. Press, 2000, p. 265–279. MR1765093

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.