Asymptotic Vassiliev invariants for vector fields

Sebastian Baader; Julien Marché

Bulletin de la Société Mathématique de France (2012)

  • Volume: 140, Issue: 4, page 569-582
  • ISSN: 0037-9484

Abstract

top
We analyse the asymptotical growth of Vassiliev invariants on non-periodic flow lines of ergodic vector fields on domains of 3 . More precisely, we show that the asymptotics of Vassiliev invariants is completely determined by the helicity of the vector field.

How to cite

top

Baader, Sebastian, and Marché, Julien. "Asymptotic Vassiliev invariants for vector fields." Bulletin de la Société Mathématique de France 140.4 (2012): 569-582. <http://eudml.org/doc/272714>.

@article{Baader2012,
abstract = {We analyse the asymptotical growth of Vassiliev invariants on non-periodic flow lines of ergodic vector fields on domains of $\mathbb \{R\}^3$. More precisely, we show that the asymptotics of Vassiliev invariants is completely determined by the helicity of the vector field.},
author = {Baader, Sebastian, Marché, Julien},
journal = {Bulletin de la Société Mathématique de France},
keywords = {Vassiliev invariants; helicity; Gauss diagram},
language = {eng},
number = {4},
pages = {569-582},
publisher = {Société mathématique de France},
title = {Asymptotic Vassiliev invariants for vector fields},
url = {http://eudml.org/doc/272714},
volume = {140},
year = {2012},
}

TY - JOUR
AU - Baader, Sebastian
AU - Marché, Julien
TI - Asymptotic Vassiliev invariants for vector fields
JO - Bulletin de la Société Mathématique de France
PY - 2012
PB - Société mathématique de France
VL - 140
IS - 4
SP - 569
EP - 582
AB - We analyse the asymptotical growth of Vassiliev invariants on non-periodic flow lines of ergodic vector fields on domains of $\mathbb {R}^3$. More precisely, we show that the asymptotics of Vassiliev invariants is completely determined by the helicity of the vector field.
LA - eng
KW - Vassiliev invariants; helicity; Gauss diagram
UR - http://eudml.org/doc/272714
ER -

References

top
  1. [1] V. I. Arnold & B. A. Khesin – Topological methods in hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer, 1998. Zbl0902.76001MR1612569
  2. [2] S. Baader – « Asymptotic link invariants for ergodic vector fields », preprint arXiv:math.GT/0803.0898. 
  3. [3] J.-M. Gambaudo & É. Ghys – « Signature asymptotique d’un champ de vecteurs en dimension 3 », Duke Math. J.106 (2001), p. 41–79. Zbl1010.37010MR1810366
  4. [4] S. Garoufalidis & A. Kricker – « A rational noncommutative invariant of boundary links », Geom. Topol.8 (2004), p. 115–204. Zbl1075.57004MR2033481
  5. [5] M. Goussarov, M. Polyak & O. Viro – « Finite-type invariants of classical and virtual knots », Topology39 (2000), p. 1045–1068. Zbl1006.57005MR1763963
  6. [6] J. Marché – « A computation of the Kontsevich integral of torus knots », Algebr. Geom. Topol.4 (2004), p. 1155–1175. Zbl1082.57009MR2113901
  7. [7] M. Polyak & O. Viro – « Gauss diagram formulas for Vassiliev invariants », Int. Math. Res. Not. 1994 (1994), p. 445ff., approx. 8 pp. Zbl0851.57010MR1316972
  8. [8] T. Vogel – « On the asymptotic linking number », Proc. Amer. Math. Soc.131 (2003), p. 2289–2297. Zbl1015.57018MR1963779

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.