Controllability of Schrödinger equation with a nonlocal term
Mariano De Leo; Constanza Sánchez Fernández de la Vega; Diego Rial
ESAIM: Control, Optimisation and Calculus of Variations (2014)
- Volume: 20, Issue: 1, page 23-41
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] T. Cazenave, Semilinear Schrödinger equations. AMS (2003). Zbl1055.35003
- [2] M. De Leo, On the existence of ground states for nonlinear Schrödinger–Poisson equation. Nonlinear Anal.73 (2010) 979–986. Zbl1191.35251
- [3] M. De Leo and D. Rial, Well-posedness and smoothing effect of nonlinear Schrödinger –Poisson equation. J. Math. Phys. 48 (2007) 093509-1,15. Zbl1152.81652MR2355098
- [4] G.K. Harkness, G.L. Oppo, E. Benkler, M. Kreuzer, R. Neubecker and T. Tschudi, Fourier space control in an LCLV feedback system. J. Optics B: Quantum and Semiclassical Optics 1 (1999) 177–182.
- [5] R. Illner, H. Lange and H. Teismann, A note on vol. 33 of the Exact Internal Control of Nonlinear Schrödinger Equations, in Quantum Control: Mathematical and Numerical Challenges, vol. 33 of CRM Proc. Lect. Notes (2003) 127–136. MR2043524
- [6] R. Illner, H. Lange and H. Teismann, Limitations on the Control of Schrödinger Equations. ESAIM: COCV 12 (2006) 615–635. Zbl1162.93316MR2266811
- [7] T. Kato, Perturbation Theory for Linear Operators. Springer (1995). Zbl0836.47009MR1335452
- [8] P. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor equations. Springer, Vienna (1990). Zbl0765.35001MR1063852
- [9] G.S. McDonald and W.J. Firth, Spatial solitary-wave optical memory. J. Optical Soc. America B7 (1990) 1328–1335.
- [10] M. Reed and B. Simon, Methods of Modern Math. Phys. Vol. II: Fourier Analysis, Self-Adjointness. Academic Press (1975). Zbl0308.47002MR493420
- [11] L. Rosier and B. Zhang, Exact boundary controllability of the nonlinear Schrödinger equation. J. Differ. Equ.246 (2009) 4129–4153. Zbl1171.35015MR2514738
- [12] B. Simon, Phase space analysis of simple scattering systems: extensions of some work of Enss. Duke Math. J.46 (1979) 119–168. Zbl0402.35076MR523604
- [13] E. Zuazua, Remarks on the controllability of the Schrödinger equation, in Quantum Control: Mathematical and Numerical Challenges, vol. 33 of CRM Proc. Lect. Notes (2003) 193–211. MR2043529