The principal eigenvalue of the ∞-laplacian with the Neumann boundary condition
ESAIM: Control, Optimisation and Calculus of Variations (2011)
- Volume: 17, Issue: 2, page 575-601
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topPatrizi, Stefania. "The principal eigenvalue of the ∞-laplacian with the Neumann boundary condition." ESAIM: Control, Optimisation and Calculus of Variations 17.2 (2011): 575-601. <http://eudml.org/doc/272780>.
@article{Patrizi2011,
abstract = {We prove the existence of a principal eigenvalue associated to the ∞-Laplacian plus lower order terms and the Neumann boundary condition in a bounded smooth domain. As an application we get uniqueness and existence results for the Neumann problem and a decay estimate for viscosity solutions of the Neumann evolution problem.},
author = {Patrizi, Stefania},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {∞-laplacian; Neumann boundary condition; principal eigenvalue; viscosity solutions; -Laplacian},
language = {eng},
number = {2},
pages = {575-601},
publisher = {EDP-Sciences},
title = {The principal eigenvalue of the ∞-laplacian with the Neumann boundary condition},
url = {http://eudml.org/doc/272780},
volume = {17},
year = {2011},
}
TY - JOUR
AU - Patrizi, Stefania
TI - The principal eigenvalue of the ∞-laplacian with the Neumann boundary condition
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2011
PB - EDP-Sciences
VL - 17
IS - 2
SP - 575
EP - 601
AB - We prove the existence of a principal eigenvalue associated to the ∞-Laplacian plus lower order terms and the Neumann boundary condition in a bounded smooth domain. As an application we get uniqueness and existence results for the Neumann problem and a decay estimate for viscosity solutions of the Neumann evolution problem.
LA - eng
KW - ∞-laplacian; Neumann boundary condition; principal eigenvalue; viscosity solutions; -Laplacian
UR - http://eudml.org/doc/272780
ER -
References
top- [1] A. Anane, Simplicité et isolation de la première valeur propre du p-Laplacien avec poids. C. R. Acad. Sci. Paris Sér. I Math.305 (1987) 752–728. Zbl0633.35061MR920052
- [2] G. Aronsson, M.G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions. Bull. Amer. Math. Soc. (N.S.) 41 (2004) 439–505. Zbl1150.35047MR2083637
- [3] H. Berestycki, L. Nirenberg and S.R.S. Varadhan, The principal eigenvalue and maximum principle for second order elliptic operators in general domain. Comm. Pure Appl. Math.47 (1994) 47–92. Zbl0806.35129MR1258192
- [4] I. Birindelli and F. Demengel, Eigenvalue, maximum principle and regularity for fully nonlinear homogeneous operators. Comm. Pure Appl. Anal.6 (2007) 335–366. Zbl1132.35032MR2289825
- [5] J. Busca, M.J. Esteban, A. Quaas, Nonlinear eigenvalues and bifurcation problems for Pucci's operators. Ann. Inst. H. Poincaré Anal. Non Linéaire22 (2005) 187–206. Zbl1205.35087MR2124162
- [6] M.C. Crandall, H. Ishii and P.L. Lions, User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992) 1–67. Zbl0755.35015MR1118699
- [7] L.C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137. American Mathematical Society (1999). Zbl0920.49004MR1464149
- [8] J. Garcia-Azorero, J.J. Manfredi, I. Peral and J.D. Rossi, Steklov eigenvalues for the ∞-Laplacian. Rend. Lincei Mat. Appl.17 (2006) 199–210. Zbl1114.35072MR2254067
- [9] H. Ishii and P.L. Lions, Viscosity solutions of fully nonlinear second-order elliptic partial differential equations. J. Diff. Equ.83 (1990) 26–78. Zbl0708.35031MR1031377
- [10] H. Ishii and Y. Yoshimura, Demi-eigenvalues for uniformly elliptic Isaacs operators. Preprint.
- [11] P. Juutinen, Principal eigenvalue of a very badly degenerate operator and applications. J. Diff. Equ.236 (2007) 532–550. Zbl1132.35066MR2322023
- [12] P. Juutinen and B. Kawohl, On the evolution governed by the infinity Laplacian. Math. Ann.335 (2006) 819–851. Zbl1110.35037MR2232018
- [13] P. Juutinen, P. Lindqvist and J.J. Manfredi, The ∞-eigenvalue problem. Arch. Ration. Mech. Anal.148 (1999) 89–105. Zbl0947.35104MR1716563
- [14] P. Lindqvist, On a nonlinear eigenvalue problem. Report 68, Univ. Jyväskylä, Jyväskylä (1995) 33–54. Zbl0838.35094MR1351043
- [15] P.L. Lions, Bifurcation and optimal stochastic control. Nonlinear Anal.7 (1983) 177–207. MR688774
- [16] S. Patrizi, The Neumann problem for singular fully nonlinear operators. J. Math. Pures Appl.90 (2008) 286–311. Zbl1185.35087MR2446081
- [17] S. Patrizi, Principal eigenvalues for Isaacs operators with Neumann boundary conditions. NoDEA16 (2009) 79–107. Zbl1178.35180MR2486349
- [18] Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian. J. Amer. Math. Soc.22 (2009) 167–210. Zbl1206.91002MR2449057
- [19] A. Quaas, Existence of positive solutions to a “semilinear” equation involving the Pucci's operators in a convex domain. Diff. Integral Equations17 (2004) 481–494. Zbl1174.35373
- [20] A. Quaas and B. Sirakov, Principal eigenvalues and the Dirichlet problem for fully nonlinear operators. Adv. Math.218 (2008) 105–135. Zbl1143.35077MR2409410
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.