The polarization in a ferroelectric thin film: local and nonlocal limit problems

Antonio Gaudiello; Kamel Hamdache

ESAIM: Control, Optimisation and Calculus of Variations (2013)

  • Volume: 19, Issue: 3, page 657-667
  • ISSN: 1292-8119

Abstract

top
In this paper, starting from classical non-convex and nonlocal 3D-variational model of the electric polarization in a ferroelectric material, via an asymptotic process we obtain a rigorous 2D-variational model for a thin film. Depending on the initial boundary conditions, the limit problem can be either nonlocal or local.

How to cite

top

Gaudiello, Antonio, and Hamdache, Kamel. "The polarization in a ferroelectric thin film: local and nonlocal limit problems." ESAIM: Control, Optimisation and Calculus of Variations 19.3 (2013): 657-667. <http://eudml.org/doc/272781>.

@article{Gaudiello2013,
abstract = {In this paper, starting from classical non-convex and nonlocal 3D-variational model of the electric polarization in a ferroelectric material, via an asymptotic process we obtain a rigorous 2D-variational model for a thin film. Depending on the initial boundary conditions, the limit problem can be either nonlocal or local.},
author = {Gaudiello, Antonio, Hamdache, Kamel},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {electric polarization; thin film; nonlocal problems},
language = {eng},
number = {3},
pages = {657-667},
publisher = {EDP-Sciences},
title = {The polarization in a ferroelectric thin film: local and nonlocal limit problems},
url = {http://eudml.org/doc/272781},
volume = {19},
year = {2013},
}

TY - JOUR
AU - Gaudiello, Antonio
AU - Hamdache, Kamel
TI - The polarization in a ferroelectric thin film: local and nonlocal limit problems
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2013
PB - EDP-Sciences
VL - 19
IS - 3
SP - 657
EP - 667
AB - In this paper, starting from classical non-convex and nonlocal 3D-variational model of the electric polarization in a ferroelectric material, via an asymptotic process we obtain a rigorous 2D-variational model for a thin film. Depending on the initial boundary conditions, the limit problem can be either nonlocal or local.
LA - eng
KW - electric polarization; thin film; nonlocal problems
UR - http://eudml.org/doc/272781
ER -

References

top
  1. [1] F. Alouges and S. Labbé, Convergence of a ferromagnetic film model. C. R. Math. Acad. Sci. Paris344 (2007) 77–82. Zbl1139.82044MR2288594
  2. [2] H. Ammari, L. Halpern and K. Hamdache, Asymptotic behavior of thin ferromagnetic films. Asymptot. Anal.24 (2000) 277–294. Zbl1108.82339MR1797773
  3. [3] G. Carbou, Thin Layers in Micromagnetism. Math. Model. Methods Appl. Sci.11 (2001) 1529–1546. Zbl1012.82031MR1872680
  4. [4] P. Chandra and P.B. Littlewood, A Landau primer for ferroelectrics, The Physics of ferroelectrics: A modern perspective, edited by K. Rabe, C.H. Ahn and J.-M. Triscone. Topics Appl. Phys. 105 (2007) 69–116. 
  5. [5] P.G. Ciarlet and P. Destuynder, A Justification of the two-dimensional linear plate model. J. Méca.18 (1979) 315–344. Zbl0415.73072MR533827
  6. [6] M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems. ESAIM: M2AN 33 (1999) 627–649. Zbl0937.78003MR1713241
  7. [7] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.58 (1975) 842–850. Zbl0339.49005MR448194
  8. [8] A. Desimone, R.V. Kohn, S. Muller and F. Otto, A reduced theory for thin-film micromagnetics. Commun. Pure Appl. Math.55 (2002) 1408–1460. Zbl1027.82042MR1916988
  9. [9] A. Gaudiello and R. Hadiji, Junction of ferromagnetic thin films. Calc. Var. Partial Differ. Equ.39 (2010) 593–619. Zbl1214.78002MR2729315
  10. [10] G. Gioia and R.D. James, Micromagnetism of very thin films. Proc. of R. London A453 (1997) 213–223. 
  11. [11] R.V. Kohn and V.V. Slastikov, Another thin-film limit of micromagnetics. Arch. Ration. Mech. Anal.178 (2005) 227–245. Zbl1074.78012MR2186425
  12. [12] R.C. Smith, Smart material systems. model development, in Front. Appl. Math. Vol. 32. SIAM (2005). Zbl1086.74002MR2132740
  13. [13] Y. Su and C.M. Landis, Continuum thermodynamics of ferroelectric domain evolution: theory, finite element implementation, and application to domain wall pinning. J. Mech. Phys. Solids55 (2007) 280–305. Zbl05560696MR2287644
  14. [14] W. Zhang and K. Bhattacharya, A computational model of ferroelectric domains. Part I. Model formulation and domain switching. Acta Mater. 53 (2005) 185–198. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.