Eigenvalues of polyharmonic operators on variable domains
Davide Buoso; Pier Domenico Lamberti
ESAIM: Control, Optimisation and Calculus of Variations (2013)
- Volume: 19, Issue: 4, page 1225-1235
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBuoso, Davide, and Lamberti, Pier Domenico. "Eigenvalues of polyharmonic operators on variable domains." ESAIM: Control, Optimisation and Calculus of Variations 19.4 (2013): 1225-1235. <http://eudml.org/doc/272790>.
@article{Buoso2013,
abstract = {We consider a class of eigenvalue problems for polyharmonic operators, including Dirichlet and buckling-type eigenvalue problems. We prove an analyticity result for the dependence of the symmetric functions of the eigenvalues upon domain perturbations and compute Hadamard-type formulas for the Frechét differentials. We also consider isovolumetric domain perturbations and characterize the corresponding critical domains for the symmetric functions of the eigenvalues. Finally, we prove that balls are critical domains.},
author = {Buoso, Davide, Lamberti, Pier Domenico},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {polyharmonic operators; eigenvalues; domain perturbation},
language = {eng},
number = {4},
pages = {1225-1235},
publisher = {EDP-Sciences},
title = {Eigenvalues of polyharmonic operators on variable domains},
url = {http://eudml.org/doc/272790},
volume = {19},
year = {2013},
}
TY - JOUR
AU - Buoso, Davide
AU - Lamberti, Pier Domenico
TI - Eigenvalues of polyharmonic operators on variable domains
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2013
PB - EDP-Sciences
VL - 19
IS - 4
SP - 1225
EP - 1235
AB - We consider a class of eigenvalue problems for polyharmonic operators, including Dirichlet and buckling-type eigenvalue problems. We prove an analyticity result for the dependence of the symmetric functions of the eigenvalues upon domain perturbations and compute Hadamard-type formulas for the Frechét differentials. We also consider isovolumetric domain perturbations and characterize the corresponding critical domains for the symmetric functions of the eigenvalues. Finally, we prove that balls are critical domains.
LA - eng
KW - polyharmonic operators; eigenvalues; domain perturbation
UR - http://eudml.org/doc/272790
ER -
References
top- [1] S. Agmon, Lectures on elliptic boundary value problems. Van Nostrand Mathematical Studies, No. 2 D. Van Nostrand Co., Inc. Princeton, N.J., Toronto London (1965). Zbl0142.37401MR178246
- [2] M.S. Ashbaugh and R.D. Benguria, On Rayleigh’s conjecture for the clamped plate and its generalization to three dimensions. Duke Math. J.78 (1995) 1–17. Zbl0833.35035MR1328749
- [3] M.S. Ashbaugh and D. Bucur, On the isoperimetric inequality for the buckling of a clamped plate. Z. Angew. Math. Phys.54 (2003) 756–770. Zbl1030.49043MR2019178
- [4] D. Bucur and G. Buttazzo, Variational methods in some shape optimization problems. Appunti dei Corsi Tenuti da Docenti della Scuola, Notes of Courses Given by Teachers at the School. Scuola Normale Superiore, Pisa (2002). Zbl1066.49026MR2011473
- [5] V. Burenkov and P.D. Lamberti, Sharp spectral stability estimates via the Lebesgue measure of domains for higher order elliptic operators. Rev. Mat. Comput.25 (2012) 435–457. Zbl1302.35271MR2931420
- [6] V. Burenkov and P.D. Lamberti, Spectral stability of higher order uniformly elliptic operators. Sobolev spaces in mathematics. II, in vol. 9 of Int. Math. Ser. (NY). Springer, New York (2009) 69–102. Zbl1219.35154MR2484622
- [7] V. Burenkov, P.D. Lamberti and M. Lanza de Cristoforis, Spectral stability of nonnegative selfadjoint operators. Sovrem. Mat. Fundam. Napravl. 15 (2006) 76–111, in Russian. English transl. in J. Math. Sci. (NY) 149 (2008) 1417–1452. MR2336430
- [8] G. Buttazzo and G. Dal Maso, An existence result for a class of shape optimization problems. Arch. Rational Mech. Anal.122 (1993) 183–195. Zbl0811.49028MR1217590
- [9] R. Dalmasso, Un problème de symétrie pour une équation biharmonique. (French). A problem of symmetry for a biharmonic equation. In vol. 11 of Ann. Fac. Sci. Toulouse Math. (1990) 45–53. Zbl0736.35034MR1191720
- [10] D. Daners, Domain perturbation for linear and semi–linear boundary value problems. Handbook of differential equations: stationary partial differential equations. Handb. Differ. Equ. VI. Elsevier/North-Holland, Amsterdam (2008) 1–81. Zbl1197.35090MR2569323
- [11] F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains. Lect. Notes Math. Springer Verlag, Berlin (2010). Zbl1239.35002MR2667016
- [12] P. Grinfeld, Hadamard’s formula inside and out. J. Optim. Theory Appl.146 (2010) 654–690. Zbl1209.49006MR2720607
- [13] J.K. Hale, Eigenvalues and perturbed domains. Ten mathematical essays on approximation in analysis and topology. Elsevier B.V., Amsterdam (2005) 95–123. Zbl1099.35068MR2162977
- [14] A. Henrot, Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2006). Zbl1109.35081MR2251558
- [15] D. Henry, Perturbation of the boundary in boundary–value problems of partial differential equations. With editorial assistance from Jack Hale and Antonio Luiz Pereira. In vol. 318 of London Math. Soc. Lect. Note Ser. Cambridge University Press, Cambridge (2005). MR2160744
- [16] D. Henry, Topics in Nonlinear Analysis, in vol. 192 of Trabalho de Mathemãtica. Universidade de Brasilia, Departamento de Matemãtica-IE (1982).
- [17] B. Kawohl, Some nonconvex shape optimization problems. Optimal shape design (Tróia, 1998). In vol. 746 of Lect. Notes Math. Springer, Berlin (2000) 49–02. MR1804684
- [18] S. Kesavan, Symmetrization and applications. In vol. 3 of Ser. Anal. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2006). Zbl1110.35002MR2238193
- [19] P.D. Lamberti and M. Lanza de Cristoforis, Critical points of the symmetric functions of the eigenvalues of the Laplace operator and overdetermined problems. J. Math. Soc. Japan58 (2006) 231–245. Zbl1099.35070MR2204572
- [20] P.D. Lamberti and M. Lanza de Cristoforis, A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator. J. Nonlinear Convex Anal.5 (2004) 19–42. Zbl1059.35090MR2049054
- [21] P.D. Lamberti and M. Lanza de Cristoforis, An analyticity result for the dependence of multiple eigenvalues and eigenspaces of the Laplace operator upon perturbation of the domain. Glasg. Math. J.44 (2002) 29–43. Zbl1067.35052MR1892282
- [22] E. Mohr, Über die Rayleighsche Vermutung: unter allen Platten von gegebener Fläche und konstanter Dichte und Elastizität hat die kreisförmige den tiefsten Grundton. Ann. Mat. Pura Appl.104 (1975) 85–122. Zbl0315.35036MR381462
- [23] N.S. Nadirashvili, Rayleigh’s conjecture on the principal frequency of the clamped plate. Arch. Rational Mech. Anal.129 (1995) 1–10. Zbl0826.73035MR1328469
- [24] J.H. Ortega and E. Zuazua, Generic simplicity of the spectrum and stabilization for a plate equation. SIAM J. Control Optim.39 (2001) 1585–1614. Zbl0980.35118MR1825594
- [25] E. Oudet, Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM: COCV 10 (2004) 315–330. Zbl1076.74045MR2084326
- [26] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics. In vol. 27 of Ann. Math. Studies. Princeton University Press, Princeton, NJ (1951). Zbl0044.38301
- [27] G. Szegö, On membranes and plates. Proc. Nat. Acad. Sci. USA36 (1950) 210–216. Zbl0039.20604MR35629
- [28] N.B. Willms, An isoperimetric inequality for the buckling of a clamped plate, Lecture at the Oberwolfach meeting on “Qualitiative properties of PDE” organized, edited by H. Berestycki, B. Kawohl and G. Talenti (1995).
- [29] S.A. Wolf and J.B. Keller, Range of the first two eigenvalues of the Laplacian. In vol. 447 of Proc. Roy. Soc. London Ser. A (1994) 397–412. Zbl0816.35097MR1312811
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.