A Bellman approach for two-domains optimal control problems in ℝN
G. Barles; A. Briani; E. Chasseigne
ESAIM: Control, Optimisation and Calculus of Variations (2013)
- Volume: 19, Issue: 3, page 710-739
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J.-P. Aubin and H. Frankowska, Set-valued analysis. Systems AND Control: Foundations and Applications, vol. 2. Birkhuser Boston, Inc. Boston, MA (1990). Zbl0713.49021MR1048347
- [2] Y. Achdou, F. Camilli, A. Cutri and N. Tchou, Hamilton-Jacobi equations constrained on networks, NDEA Nonlinear Differential Equation and Application, to appear (2012). Zbl1268.35120MR3057137
- [3] A.S. Mishra and G.D. Veerappa Gowda, Explicit Hopf-Lax type formulas for Hamilton-Jacobi equations and conservation laws with discontinuous coefficients. J. Diff. Eq.241 (2007) 1–31. Zbl1128.35067MR2356208
- [4] M. Bardi and I. Capuzzo Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems and Control: Foundations & Applications. Birkhauser Boston Inc., Boston, MA (1997). Zbl0890.49011MR1484411
- [5] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Springer-Verlag, Paris (1994). Zbl0819.35002MR1613876
- [6] G. Barles and E.R. Jakobsen, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations. ESAIM: M2AN 36 (2002) 33–54. Zbl0998.65067MR1916291
- [7] G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim.26 (1988) 1133–1148. Zbl0674.49027MR957658
- [8] G. Barles and B. Perthame, Comparison principle for Dirichlet type Hamilton-Jacobi Equations and singular perturbations of degenerated elliptic equations. Appl. Math. Optim.21 (1990) 21–44. Zbl0691.49028MR1014943
- [9] A.-P. Blanc, Deterministic exit time control problems with discontinuous exit costs. SIAM J. Control Optim.35 (1997) 399–434. Zbl0871.49027MR1436631
- [10] A-P. Blanc, Comparison principle for the Cauchy problem for Hamilton-Jacobi equations with discontinuous data. Nonlinear Anal. Ser. A Theory Methods45 (2001) 1015–1037. Zbl0995.49016MR1846421
- [11] A. Bressan and Y. Hong, Optimal control problems on stratified domains. Netw. Heterog. Media 2 (2007) 313–331 (electronic). Zbl1123.49028MR2291823
- [12] F Camilli and A. Siconolfi, Time-dependent measurable Hamilton-Jacobi equations. Comm. Partial Differ. Equ. 30 (2005) 813–847. Zbl1082.35053MR2153516
- [13] G. Coclite and N. Risebro, Viscosity solutions of Hamilton-Jacobi equations with discontinuous coefficients. J. Hyperbolic Differ. Equ.4 (2007) 771–795. Zbl1144.35016MR2374224
- [14] C. De Zan and P. Soravia, Cauchy problems for noncoercive Hamilton-Jacobi-Isaacs equations with discontinuous coefficients. Interfaces Free Bound12 (2010) 347–368. Zbl1205.35042MR2727675
- [15] K. Deckelnick and C. Elliott, Uniqueness and error analysis for Hamilton-Jacobi equations with discontinuities. Interfaces Free Bound6 (2004) 329–349. Zbl1081.35115MR2095336
- [16] P. Dupuis, A numerical method for a calculus of variations problem with discontinuous integrand. Applied stochastic analysis, New Brunswick, NJ 1991. Lect. Notes Control Inform. Sci., vol. 177. Springer, Berlin (1992) 90–107. MR1169920
- [17] A.F. Filippov, Differential equations with discontinuous right-hand side. Matematicheskii Sbornik 51 (1960) 99–128. Amer. Math. Soc. Transl. 42 (1964) 199–231 (English translation Series 2). Zbl0148.33002MR114016
- [18] M. Garavello and P. Soravia, Optimality principles and uniqueness for Bellman equations of unbounded control problems with discontinuous running cost. NoDEA Nonlinear Differ. Equ. Appl.11 (2004) 271–298. Zbl1053.49026MR2090274
- [19] M. Garavello and P. Soravia, Representation formulas for solutions of the HJI equations with discontinuous coefficients and existence of value in differential games. J. Optim. Theory Appl.130 (2006) 209–229. Zbl1123.49033MR2281799
- [20] Y. Giga, P. Gòrka and P. Rybka, A comparison principle for Hamilton-Jacobi equations with discontinuous Hamiltonians. Proc. Amer. Math. Soc.139 (2011) 1777–1785. Zbl1215.49035MR2763765
- [21] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second-Order. Springer, New-York (1983). Zbl0361.35003MR737190
- [22] Lions P.L.Generalized Solutions of Hamilton-Jacobi Equations, Res. Notes Math., vol. 69. Pitman, Boston (1982). Zbl0497.35001MR667669
- [23] R.T. Rockafellar, Convex analysis, Princeton Mathematical Series, 28, Princeton University Press, Princeton, N.J. (1970). Zbl0932.90001MR274683
- [24] C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and applications to traffic flows, ESAIM: COCV 19 (2013) 1–316. Zbl1262.35080MR3023064
- [25] H.M. Soner, Optimal control with state-space constraint I. SIAM J. Control Optim.24 (1986) 552–561. Zbl0597.49023MR838056
- [26] D. Schieborn and F. Camilli, Viscosity solutions of Eikonal equations on topological networks, to appear in Calc. Var. Partial Differential Equations. Zbl1260.49047MR3018167
- [27] P. Soravia, Degenerate eikonal equations with discontinuous refraction index. ESAIM: COCV 12 (2006). Zbl1105.35026MR2209351
- [28] T. Wasewski, Systèmes de commande et équation au contingent. Bull. Acad. Pol. Sci.9 (1961) 151–155. Zbl0098.28402