Uniform local null control of the Leray-α model
Fágner D. Araruna; Enrique Fernández-Cara; Diego A. Souza
ESAIM: Control, Optimisation and Calculus of Variations (2014)
- Volume: 20, Issue: 4, page 1181-1202
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topAraruna, Fágner D., Fernández-Cara, Enrique, and Souza, Diego A.. "Uniform local null control of the Leray-α model." ESAIM: Control, Optimisation and Calculus of Variations 20.4 (2014): 1181-1202. <http://eudml.org/doc/272808>.
@article{Araruna2014,
abstract = {This paper deals with the distributed and boundary controllability of the so called Leray-α model. This is a regularized variant of the Navier−Stokes system (α is a small positive parameter) that can also be viewed as a model for turbulent flows. We prove that the Leray-α equations are locally null controllable, with controls bounded independently of α. We also prove that, if the initial data are sufficiently small, the controls converge as α → 0+ to a null control of the Navier−Stokes equations. We also discuss some other related questions, such as global null controllability, local and global exact controllability to the trajectories, etc.},
author = {Araruna, Fágner D., Fernández-Cara, Enrique, Souza, Diego A.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {null controllability; Carleman inequalities; Leray-αmodel; Navier−Stokes equations; Leray- model; Navier-Stokes equations},
language = {eng},
number = {4},
pages = {1181-1202},
publisher = {EDP-Sciences},
title = {Uniform local null control of the Leray-α model},
url = {http://eudml.org/doc/272808},
volume = {20},
year = {2014},
}
TY - JOUR
AU - Araruna, Fágner D.
AU - Fernández-Cara, Enrique
AU - Souza, Diego A.
TI - Uniform local null control of the Leray-α model
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2014
PB - EDP-Sciences
VL - 20
IS - 4
SP - 1181
EP - 1202
AB - This paper deals with the distributed and boundary controllability of the so called Leray-α model. This is a regularized variant of the Navier−Stokes system (α is a small positive parameter) that can also be viewed as a model for turbulent flows. We prove that the Leray-α equations are locally null controllable, with controls bounded independently of α. We also prove that, if the initial data are sufficiently small, the controls converge as α → 0+ to a null control of the Navier−Stokes equations. We also discuss some other related questions, such as global null controllability, local and global exact controllability to the trajectories, etc.
LA - eng
KW - null controllability; Carleman inequalities; Leray-αmodel; Navier−Stokes equations; Leray- model; Navier-Stokes equations
UR - http://eudml.org/doc/272808
ER -
References
top- [1] V.M. Alekseev, V.M. Tikhomirov and S.V. Fomin, Optimal control. Contemporary Soviet Mathematics. Translated from the Russian by V.M. Volosov. Consultants Bureau, New York (1987). Zbl0689.49001MR924574
- [2] F.D. Araruna, E. Fernández-Cara and D.A. Souza, On the control of the Burgers-alpha model. Adv. Differ. Eq.18 (2013) 935–954. Zbl1271.93020MR3100056
- [3] N. Carreño and S. Guerrero, Local null controllability of the N-dimensional Navier−Stokes system with N − 1 scalar controls in an arbitrary control domain. J. Math. Fluid Mech. 15 (2013) 139–153. Zbl1278.35173MR3020909
- [4] A. Cheskidov, D.D. Holm, E. Olson and E.S. Titi, On a Leray-α model of turbulence. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci.461 (2005) 629–649. Zbl1145.76386MR2121928
- [5] P. Constantin and C. Foias, Navier−Stokes equations, Chicago Lect. Math. University of Chicago Press, Chicago, IL (1988). Zbl0687.35071MR972259
- [6] J.-M. Coron, On the controllability of the 2-D incompressible Navier−Stokes equations with the Navier slip boundary conditions. ESAIM: COCV 1 (1995/96) 35–75. Zbl0872.93040MR1393067
- [7] J.-M. Coron and A.V. Fursikov, Global exact controllability of the 2D Navier−Stokes equations on a manifold without boundary. Russian J. Math. Phys. 4 (1996) 429–448. Zbl0938.93030MR1470445
- [8] J.-M. Coron and S. Guerrero, Null controllability of the N-dimensional Stokes system with N − 1 scalar controls. J. Differ. Eq. 246 (2009) 2908–2921. Zbl1172.35042MR2503028
- [9] J.-M. Coron and P. Lissy, Local null controllability of the three-dimensional navier−stokes system with a distributed control having two vanishing components. Preprint (2012). Zbl1308.35163MR3279537
- [10] R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Tome 1, Collection du Commissariat à l’Énergie Atomique: Série Scientifique. [Collection of the Atomic Energy Commission: Science Series]. Masson, Paris (1984). Zbl0664.47003MR792484
- [11] S. Ervedoza, O. Glass, S. Guerrero and J.-P. Puel, Local exact controllability for the one-dimensional compressible Navier−Stokes equation. Arch. Ration. Mech. Anal. 206 (2012) 189–238. Zbl06102063MR2968594
- [12] E. Fernández-Cara and S. Guerrero, Null controllability of the Burgers system with distributed controls. Systems Control Lett.56 (2007) 366–372. Zbl1130.93015MR2311198
- [13] E. Fernández-Cara, S. Guerrero, O.Y. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier−Stokes system. J. Math. Pures Appl. 83 (2004) 1501–1542. Zbl1267.93020
- [14] E. Fernández-Cara, S. Guerrero, O.Y. Imanuvilov and J.-P. Puel, Some controllability results for the N-dimensional Navier−Stokes and Boussinesq systems with N − 1 scalar controls. SIAM J. Control Optim. 45 (2006) 146–173. Zbl1109.93006MR2225301
- [15] H. Fujita and T. Kato, On the Navier−Stokes initial value problem. I. Arch. Rational Mech. Anal. 16 (1964) 269–315. Zbl0126.42301MR166499
- [16] H. Fujita and H. Morimoto, On fractional powers of the Stokes operator. Proc. Japan Acad.46 (1970) 1141–1143. Zbl0235.35067MR296755
- [17] A.V. Fursikov and O.Y. Imanuvilov, Exact controllability of the Navier−Stokes and Boussinesq equations. Uspekhi Mat. Nauk 54 (1999) 93–146. Zbl0970.35116MR1728643
- [18] A.V. Fursikov and O.Y. Imanuvilov, Controllability of evolution equations, vol. 34 of Lect. Notes Ser. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul (1996). Zbl0862.49004MR1406566
- [19] J.D. Gibbon and D.D. Holm, Estimates for the LANS-α, Leray-α and Bardina models in terms of a Navier−Stokes Reynolds number. Indiana Univ. Math. J. 57 (2008) 2761–2773. Zbl1157.76009MR2483000
- [20] O. Glass and S. Guerrero, On the uniform controllability of the Burgers equation. SIAM J. Control Optim.46 (2007) 1211–1238. Zbl1140.93013MR2346380
- [21] M. González-Burgos, S. Guerrero and J.-P. Puel, Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation. Commun. Pure Appl. Anal.8 (2009) 311–333. Zbl1152.93005MR2449112
- [22] S. Guerrero, Local exact controllability to the trajectories of the Boussinesq system. Ann. Inst. Henri Poincaré Anal. Non Linéaire23 (2006) 29–61. Zbl1098.35027MR2194580
- [23] S. Guerrero and O.Y. Imanuvilov, Remarks on global controllability for the Burgers equation with two control forces. Annal. Inst. Henri Poincaré Anal. Non Linéaire24 (2007) 897–906. Zbl1248.93024MR2371111
- [24] S. Guerrero, O.Y. Imanuvilov and J.-P. Puel, A result concerning the global approximate controllability of the Navier−Stokes system in dimension 3. J. Math. Pures Appl. 98 (2012) 689–709. Zbl1253.35100MR2994698
- [25] O.Y. Imanuvilov, Remarks on exact controllability for the Navier−Stokes equations. ESAIM: COCV 6 (2001) 39–72. Zbl0961.35104MR1804497
- [26] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math.63 (1934) 193–248. MR1555394JFM60.0726.05
- [27] J.-L. Lions, Remarques sur la controlâbilite approchée, in Spanish-French Conference on Distributed-Systems Control, Spanish. Univ. Málaga, Málaga (1990) 77–87. Zbl0752.93037MR1108876
- [28] J. Simon, Compact sets in the space Lp(0,T;B). Annal. Mat. Pura Appl.146 (1987) 65–96. Zbl0629.46031MR916688
- [29] L. Tartar, An introduction to Sobolev spaces and interpolation spaces, vol. 3 of Lect. Notes of the Unione Matematica Italiana. Springer, Berlin (2007). Zbl1126.46001MR2328004
- [30] R. Temam, Navier−Stokes equations. Theory and numerical analysis. Vol. 2 of Studies Math. Appl. North-Holland Publishing Co., Amsterdam (1977). Zbl0383.35057
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.