Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations
Eduardo Casas; Fredi Tröltzsch
ESAIM: Control, Optimisation and Calculus of Variations (2011)
- Volume: 17, Issue: 3, page 771-800
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl.23 (2002) 201–229. Zbl1033.65044MR1937089
- [2] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York-Berlin-Heidelberg (1984). Zbl0804.65101
- [3] E. Casas and V. Dhamo, Error estimates for the numerical approximation of a quasilinear Neumann problem under minimal regularity of the data. (Submitted). Zbl1209.65129
- [4] E. Casas and M. Mateos, Uniform convergence of the FEM. Applications to state constrained control problems. Comp. Appl. Math. 21 (2007) 67–100. Zbl1119.49309MR2009948
- [5] E. Casas and F. Tröltzsch, Optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM J. Control Optim.48 (2009) 688–718. Zbl1194.49025MR2486089
- [6] P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). Zbl0511.65078MR520174
- [7] J. Douglas, Jr. and T. Dupont, A Galerkin method for a nonlinear Dirichlet problem. Math. Comp.29 (1975) 689–696. Zbl0306.65072MR431747
- [8] M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case. Comput. Optim. Appl.30 (2005) 45–61. Zbl1074.65069MR2122182
- [9] I. Hlaváček, Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients. J. Math. Anal. Appl.212 (1997) 452–466. Zbl0919.35047MR1464890
- [10] I. Hlaváček, M. Křížek and J. Malý, On Galerkin approximations of quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl.184 (1994) 168–189. Zbl0802.65113
- [11] L. Liu, M. Křížek and P. Neittaanmäki, Higher order finite element approximation of a quasilinear elliptic boundary value problem of a non-monotone type. Appl. Math.41 (1996) 467–478. Zbl0870.65096
- [12] R. Rannacher and R. Scott, Some optimal error estimates for piecewise finite element approximations. Math. Comp.38 (1982) 437–445. Zbl0483.65007MR645661
- [13] P. Raviart and J. Thomas, Introduction à l'Analyse Numérique des Équations aux Dérivées Partielles. Masson, Paris (1983). Zbl0561.65069