Higher order finite element approximation of a quasilinear elliptic boundary value problem of a non-monotone type
Liping Liu; Michal Křížek; Pekka Neittaanmäki
Applications of Mathematics (1996)
- Volume: 41, Issue: 6, page 467-478
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topLiu, Liping, Křížek, Michal, and Neittaanmäki, Pekka. "Higher order finite element approximation of a quasilinear elliptic boundary value problem of a non-monotone type." Applications of Mathematics 41.6 (1996): 467-478. <http://eudml.org/doc/32962>.
@article{Liu1996,
abstract = {A nonlinear elliptic partial differential equation with homogeneous Dirichlet boundary conditions is examined. The problem describes for instance a stationary heat conduction in nonlinear inhomogeneous and anisotropic media. For finite elements of degree $k\ge 1$ we prove the optimal rates of convergence $\mathcal \{O\}(h^k)$ in the $H^1$-norm and $\mathcal \{O\}(h^\{k+1\})$ in the $L^2$-norm provided the true solution is sufficiently smooth. Considerations are restricted to domains with polyhedral boundaries. Numerical integration is not taken into account.},
author = {Liu, Liping, Křížek, Michal, Neittaanmäki, Pekka},
journal = {Applications of Mathematics},
keywords = {nonlinear boundary value problem; finite elements; rate of convergence; anisotropic heat conduction; nonlinear boundary value problem; finite elements; rate of convergence; anisotropic heat conduction},
language = {eng},
number = {6},
pages = {467-478},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Higher order finite element approximation of a quasilinear elliptic boundary value problem of a non-monotone type},
url = {http://eudml.org/doc/32962},
volume = {41},
year = {1996},
}
TY - JOUR
AU - Liu, Liping
AU - Křížek, Michal
AU - Neittaanmäki, Pekka
TI - Higher order finite element approximation of a quasilinear elliptic boundary value problem of a non-monotone type
JO - Applications of Mathematics
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 41
IS - 6
SP - 467
EP - 478
AB - A nonlinear elliptic partial differential equation with homogeneous Dirichlet boundary conditions is examined. The problem describes for instance a stationary heat conduction in nonlinear inhomogeneous and anisotropic media. For finite elements of degree $k\ge 1$ we prove the optimal rates of convergence $\mathcal {O}(h^k)$ in the $H^1$-norm and $\mathcal {O}(h^{k+1})$ in the $L^2$-norm provided the true solution is sufficiently smooth. Considerations are restricted to domains with polyhedral boundaries. Numerical integration is not taken into account.
LA - eng
KW - nonlinear boundary value problem; finite elements; rate of convergence; anisotropic heat conduction; nonlinear boundary value problem; finite elements; rate of convergence; anisotropic heat conduction
UR - http://eudml.org/doc/32962
ER -
References
top- Unicité de la solution de certaines équations elliptiques non linéaires, C. R. Acad. Sci. Paris Ser. I Math. 315 (1992), 1159–1164. (1992) MR1194509
- On the existence, uniqueness and convergence of nonlinear mixed finite element methods, Mat. Apl. Comput. 8 (1989), 241–258. (1989) Zbl0709.65080MR1067288
- The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978. (1978) Zbl0383.65058MR0520174
- 10.1090/S0025-5718-1975-0431747-2, Math. Comp. 29 (1975), 689–696. (1975) MR0431747DOI10.1090/S0025-5718-1975-0431747-2
- 10.1007/BF00250482, Arch. Rational Mech. Anal. 42 (1971), 157–168. (1971) MR0393829DOI10.1007/BF00250482
- An analysis of finite element variational crimes for a nonlinear elliptic problem of a nonmonotone type, East-West J. Numer. Math. 1 (1993), 267–285. (1993) MR1318806
- 10.1051/m2an/1990240404571, RAIRO Modèl. Math. Anal. Numér. 24 (1990), 457–500. (1990) MR1070966DOI10.1051/m2an/1990240404571
- 10.1007/BF01398687, Numer. Math. 52 (1988), 147–163. (1988) MR0923708DOI10.1007/BF01398687
- Weakly continuous operators. Applications to differential equations, Appl. Math. 39 (1994), 45–56. (1994) MR1254746
- 10.1137/0715026, SIAM J. Numer. Anal. 15 (1978), 418–431. (1978) MR0502037DOI10.1137/0715026
- Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977. (1977) MR0473443
- Reliable solution of a quasilinear nonpotential elliptic problem of a nonmonotone type with respect to the uncertainty in coefficients, accepted by J. Math. Anal. Appl. MR1464890
- On a nonpotential and nonmonotone second order elliptic problem with mixed boundary conditions, Stability Appl. Anal. Contin. Media 3 (1993), 85–97. (1993)
- 10.1006/jmaa.1994.1192, J.Math. Anal. Appl. 184 (1994), 168–189. (1994) MR1275952DOI10.1006/jmaa.1994.1192
- On diagonal dominance of stiffness matrices in 3D, East-West J. Numer. Math. 3 (1995), 59–69. (1995) MR1331484
- 10.4064/am-24-1-97-107, Applicationes Mathematicae 24 (1996), 97–107. (1996) MR1404987DOI10.4064/am-24-1-97-107
- Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications, Kluwer, Dordrecht, 1996. (1996) MR1431889
- 3d solution of temperature fields in magnetic circuits of large transformers (in Czech), Elektrotechn. obzor 76 (1987), 646–652. (1987)
- 10.1090/S0025-5718-1985-0777266-1, Math. Comp. 44 (1985), 303–320. (1985) Zbl0567.65079MR0777266DOI10.1090/S0025-5718-1985-0777266-1
- Les Méthodes Directes en Théorie des Équations Elliptiques, Academia, Prague, 1967. (1967) MR0227584
- Introduction to the Theory of Nonlinear Elliptic Equations, Teubner, Leipzig, 1983. (1983) MR0731261
- On -convergence of finite element approximations to the solution of nonlinear boundary value problem, in: Proc. of Numer. Anal. Conf. (ed. J. H. Miller), Academic Press, New York, 1977, 317–325. MR0513215
- Introduzione al Metodo Degli Elementi Finiti, Lecture Notes, Trento Univ., 1985. (1985)
- Temperature distribution in large transformer cores, Proc. of GANZ Conf. (ed. M. Franyó), Budapest, 1985, 254–261.
- Functional Analysis, Springer-Verlag, Berlin, 1965. (1965) Zbl0126.11504
- Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations, Academic Press, London, 1990. (1990) MR1086876
- 10.1007/BF01385610, Numer. Math. 58 (1990), 51–77. (1990) DOI10.1007/BF01385610
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.