Variational approximation of a functional of Mumford–Shah type in codimension higher than one

Francesco Ghiraldin

ESAIM: Control, Optimisation and Calculus of Variations (2014)

  • Volume: 20, Issue: 1, page 190-221
  • ISSN: 1292-8119

Abstract

top
In this paper we consider a new kind of Mumford–Shah functional E(u, Ω) for maps u : ℝm → ℝn with m ≥ n. The most important novelty is that the energy features a singular set Su of codimension greater than one, defined through the theory of distributional jacobians. After recalling the basic definitions and some well established results, we prove an approximation property for the energy E(u, Ω) via Γ −convergence, in the same spirit of the work by Ambrosio and Tortorelli [L. Ambrosio and V.M. Tortorelli, Commun. Pure Appl. Math. 43 (1990) 999–1036].

How to cite

top

Ghiraldin, Francesco. "Variational approximation of a functional of Mumford–Shah type in codimension higher than one." ESAIM: Control, Optimisation and Calculus of Variations 20.1 (2014): 190-221. <http://eudml.org/doc/272865>.

@article{Ghiraldin2014,
abstract = {In this paper we consider a new kind of Mumford–Shah functional E(u, Ω) for maps u : ℝm → ℝn with m ≥ n. The most important novelty is that the energy features a singular set Su of codimension greater than one, defined through the theory of distributional jacobians. After recalling the basic definitions and some well established results, we prove an approximation property for the energy E(u, Ω) via Γ −convergence, in the same spirit of the work by Ambrosio and Tortorelli [L. Ambrosio and V.M. Tortorelli, Commun. Pure Appl. Math. 43 (1990) 999–1036].},
author = {Ghiraldin, Francesco},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {jacobian; Γ-convergence; higher codimension; Mumford–Shah; Ginzburg–Landau; phase transition; Mumford-Shah-type functional; Jacobian; -convergence},
language = {eng},
number = {1},
pages = {190-221},
publisher = {EDP-Sciences},
title = {Variational approximation of a functional of Mumford–Shah type in codimension higher than one},
url = {http://eudml.org/doc/272865},
volume = {20},
year = {2014},
}

TY - JOUR
AU - Ghiraldin, Francesco
TI - Variational approximation of a functional of Mumford–Shah type in codimension higher than one
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2014
PB - EDP-Sciences
VL - 20
IS - 1
SP - 190
EP - 221
AB - In this paper we consider a new kind of Mumford–Shah functional E(u, Ω) for maps u : ℝm → ℝn with m ≥ n. The most important novelty is that the energy features a singular set Su of codimension greater than one, defined through the theory of distributional jacobians. After recalling the basic definitions and some well established results, we prove an approximation property for the energy E(u, Ω) via Γ −convergence, in the same spirit of the work by Ambrosio and Tortorelli [L. Ambrosio and V.M. Tortorelli, Commun. Pure Appl. Math. 43 (1990) 999–1036].
LA - eng
KW - jacobian; Γ-convergence; higher codimension; Mumford–Shah; Ginzburg–Landau; phase transition; Mumford-Shah-type functional; Jacobian; -convergence
UR - http://eudml.org/doc/272865
ER -

References

top
  1. [1] E. Acerbi and G. Dal Maso, New lower semicontinuity results for polyconvex integrals. Calc. Var. Partial Differ. Equ.2 (1994) 329–371. Zbl0810.49014MR1385074
  2. [2] R.A. Adams and J.J.F. Fournier, Sobolev spaces, Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edition. Elsevier/Academic Press, Amsterdam (2003). Zbl1098.46001MR2424078
  3. [3] G. Alberti, S. Baldo and G. Orlandi, Functions with prescribed singularities. J. Eur. Math. Soc. (JEMS) 5 (2003) 275–311. Zbl1033.46028MR2002215
  4. [4] G. Alberti, S. Baldo and G. Orlandi, Variational convergence for functionals of Ginzburg-Landau type. Indiana Univ. Math. J.54 (2005) 1411–1472. Zbl1160.35013MR2177107
  5. [5] F. Almgren. Deformations and multiple-valued functions, in Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), vol. 44 of Proc. Sympos. Pure Math. Amer. Math. Soc. Providence, RI (1986) 29–130. Zbl0595.49028MR840268
  6. [6] L. Ambrosio, Existence theory for a new class of variational problems. Arch. Rational Mech. Anal.111 (1990) 291–322. Zbl0711.49064MR1068374
  7. [7] L. Ambrosio, Metric space valued functions of bounded variation. Ann. Scuola Norm. Sup. Pisa Cl. Sci.17 (1990) 439–478. Zbl0724.49027MR1079985
  8. [8] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000). Zbl0957.49001MR1857292
  9. [9] L. Ambrosio and F. Ghiraldin, Flat chains of finite size in metric spaces. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis (2012). Zbl1261.49013MR3011292
  10. [10] L. Ambrosio and F. Ghiraldin, Compactness of special functions of bounded higher variation. Analysis and Geometry in Metric Spaces1 (2013) 1–30. Zbl1266.49090MR3108864
  11. [11] L. Ambrosio and B. Kirchheim, Currents in metric spaces. Acta Math.185 (2000) 1–80. Zbl0984.49025MR1794185
  12. [12] L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math.43 (1990) 999–1036. Zbl0722.49020
  13. [13] L. Ambrosio and V.M. Tortorelli, On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B6 (1992) 105–123. Zbl0776.49029MR1164940
  14. [14] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1976/1977) 337–403. Zbl0368.73040MR475169
  15. [15] F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices, vol. 13 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston Inc., Boston, MA (1994). Zbl0802.35142MR1269538
  16. [16] A. Braides, Γ-convergence for beginners, vol. 22 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2002). Zbl1198.49001MR1968440
  17. [17] G. Dal Maso, An introduction to Γ-convergence. Progr. Nonlinear Differ. Eq. Appl., vol. 8. Birkhäuser Boston Inc., Boston, MA (1993). Zbl0816.49001MR1201152
  18. [18] G. David, Singular sets of minimizers for the Mumford-Shah functional, vol. 233 of Progress in Mathematics. Birkhäuser Verlag, Basel (2005). Zbl1086.49030MR2129693
  19. [19] E. De Giorgi, M. Carriero and A. Leaci, Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal.108 (1989) 195–218. Zbl0682.49002MR1012174
  20. [20] C. De Lellis, Some fine properties of currents and applications to distributional Jacobians. Proc. Roy. Soc. Edinburgh Sect. A132 (2002) 815–842. Zbl1025.49029MR1926918
  21. [21] C. De Lellis and F. Ghiraldin, An extension of the identity Det = det. C. R. Acad. Sci. Paris Sér. I Math. (2010). Zbl1201.35088
  22. [22] T. De Pauw and R. Hardt. Rectifiable and flat G chains in a metric space. Amer. J. Math.134 (2012) 1–69. Zbl1252.49070MR2876138
  23. [23] N. Desenzani and I. Fragalà, Concentration of Ginzburg-Landau energies with supercritical growth. SIAM J. Math. Anal. 38 (2006) 385–413 (electronic). Zbl1109.49014MR2237153
  24. [24] H. Federer, Geometric measure theory, vol. 153 of Die Grundlehren der mathematischen Wissenschaften, Band. Springer-Verlag New York Inc., New York (1969). Zbl0176.00801MR257325
  25. [25] H. Federer, Flat chains with positive densities. Indiana Univ. Math. J.35 (1986) 413–424. Zbl0611.49029MR833403
  26. [26] W. H. Fleming, Flat chains over a finite coefficient group. Trans. Amer. Math. Soc.121 (1966) 160–186. Zbl0136.03602MR185084
  27. [27] N. Fusco and J.E. Hutchinson, A direct proof for lower semicontinuity of polyconvex functionals. Manuscripta Math.87 (1995) 35–50. Zbl0874.49015MR1329439
  28. [28] M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations. I, II, vol. 37, 38 of Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin (1998). Zbl0914.49002MR1645086
  29. [29] Enrico Giusti, Direct methods in the calculus of variations. World Scientific Publishing Co. Inc., River Edge, NJ (2003). MR 1962933 (2004g:49003) Zbl1028.49001MR1962933
  30. [30] R. Hardt and T. Rivière, Connecting topological Hopf singularities. Ann. Sc. Norm. Super. Pisa Cl. Sci.2 (2003) 287–344. Zbl1150.58004MR2005606
  31. [31] R.L. Jerrard and H.M. Soner, Functions of bounded higher variation. Indiana Univ. Math. J.51 (2002) 645–677. Zbl1057.49036MR1911049
  32. [32] E.H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14 of Amer. Math. Soc. Providence, RI, 2nd edition (2001). Zbl0966.26002MR1817225
  33. [33] L. Modica and S. Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A14 (1977) 526–529. Zbl0364.49006MR473971
  34. [34] L. Modica and S. Mortola, Un esempio di Γ−-convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285–299. Zbl0356.49008MR445362
  35. [35] F. Morgan, Size-minimizing rectifiable currents. Invent. Math.96 (1989) 333–348. Zbl0645.49024MR989700
  36. [36] S. Müller, Det = det. A remark on the distributional determinant. C. R. Acad. Sci. Paris Sér. I Math. 311 (1990) 13–17. Zbl0717.46033MR1062920
  37. [37] S. Müller and S.J. Spector, An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rational Mech. Anal.131 (1995) 1–66. Zbl0836.73025MR1346364
  38. [38] D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math.42 (1989) 577–685. Zbl0691.49036MR997568
  39. [39] E. Sandier and S. Serfaty, Vortices in the magnetic Ginzburg-Landau model, vol. 70 of Progress Non. Differ. Eqs. Appl. Birkhäuser Boston Inc., Boston, MA (2007). Zbl1112.35002MR2279839
  40. [40] V. Šverák, Regularity properties of deformations with finite energy. Arch. Rational Mech. Anal.100 (1988) 105–127. Zbl0659.73038MR913960
  41. [41] G. Talenti. Best constant in Sobolev inequality. Ann. Mat. Pura Appl.110 (1976) 353–372. Zbl0353.46018MR463908
  42. [42] B. White, Rectifiability of flat chains. Ann. Math.150 (1999) 165–184. Zbl0965.49024MR1715323
  43. [43] W.P. Ziemer, Weakly differentiable functions, Sobolev spaces and functions of bounded variation, vol. 120 of Graduate Texts in Mathematics. Springer-Verlag, New York (1989). Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.