Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via penalization method
Giovany M. Figueiredo; João R. Santos
ESAIM: Control, Optimisation and Calculus of Variations (2014)
- Volume: 20, Issue: 2, page 389-415
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topFigueiredo, Giovany M., and Santos, João R.. "Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via penalization method." ESAIM: Control, Optimisation and Calculus of Variations 20.2 (2014): 389-415. <http://eudml.org/doc/272888>.
@article{Figueiredo2014,
abstract = {In this paper we are concerned with questions of multiplicity and concentration behavior of positive solutions of the elliptic problem\[ (P\_\{\})\hspace*\{113.81102pt\} \left\lbrace \begin\{array\}\{rcl\} \mathcal \{L\}\_\{\}u=f(u) \ \ \mbox\{in\} \ \ \mathbb \{R\}^\{3\},\\[1.5mm] u>0 \ \ \mbox\{in\} \ \ \mathbb \{R\}^\{3\},\\[1.5mm] u \in H^\{1\}(\mathbb \{R\}^3), \end\{array\} \right. \]( P ε ) ℒ ε u = f ( u ) in IR 3 , u > 0 in IR 3 , u ∈ H 1 ( IR 3 ) , whereε is a small positive parameter, f : ℝ → ℝ is a continuous function,\[ \mathcal \{L\}\_\{\} \]ℒ ε is a nonlocal operator defined by\[ \mathcal \{L\}\_\{\}u=M\left(\frac\{1\}\{\}\int \_\{\mathbb \{R\}^\{3\}\}|\nabla u|^\{2\}+\frac\{1\}\{^\{3\}\}\int \_\{\mathbb \{R\}^\{3\}\}V(x)u^\{2\}\right)\left[-^\{2\}\Delta u + V(x)u \right], \]ℒ ε u = M 1 ε ∫ IR 3 | ∇ u | 2 + 1 ε 3 ∫ IR 3 V ( x ) u 2 [ − ε 2 Δ u + V ( x ) u ] ,M : IR+ → IR+ and V : IR3 → IR are continuous functions which verify some hypotheses.},
author = {Figueiredo, Giovany M., Santos, João R.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {penalization method; Schrödinger–Kirchhoff type problem; Lusternik–Schnirelmann theory; Moser iteration; Schrödinger-Kirchhoff type problem; Lusternik-Schnirelmann theory},
language = {eng},
number = {2},
pages = {389-415},
publisher = {EDP-Sciences},
title = {Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via penalization method},
url = {http://eudml.org/doc/272888},
volume = {20},
year = {2014},
}
TY - JOUR
AU - Figueiredo, Giovany M.
AU - Santos, João R.
TI - Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via penalization method
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2014
PB - EDP-Sciences
VL - 20
IS - 2
SP - 389
EP - 415
AB - In this paper we are concerned with questions of multiplicity and concentration behavior of positive solutions of the elliptic problem\[ (P_{})\hspace*{113.81102pt} \left\lbrace \begin{array}{rcl} \mathcal {L}_{}u=f(u) \ \ \mbox{in} \ \ \mathbb {R}^{3},\\[1.5mm] u>0 \ \ \mbox{in} \ \ \mathbb {R}^{3},\\[1.5mm] u \in H^{1}(\mathbb {R}^3), \end{array} \right. \]( P ε ) ℒ ε u = f ( u ) in IR 3 , u > 0 in IR 3 , u ∈ H 1 ( IR 3 ) , whereε is a small positive parameter, f : ℝ → ℝ is a continuous function,\[ \mathcal {L}_{} \]ℒ ε is a nonlocal operator defined by\[ \mathcal {L}_{}u=M\left(\frac{1}{}\int _{\mathbb {R}^{3}}|\nabla u|^{2}+\frac{1}{^{3}}\int _{\mathbb {R}^{3}}V(x)u^{2}\right)\left[-^{2}\Delta u + V(x)u \right], \]ℒ ε u = M 1 ε ∫ IR 3 | ∇ u | 2 + 1 ε 3 ∫ IR 3 V ( x ) u 2 [ − ε 2 Δ u + V ( x ) u ] ,M : IR+ → IR+ and V : IR3 → IR are continuous functions which verify some hypotheses.
LA - eng
KW - penalization method; Schrödinger–Kirchhoff type problem; Lusternik–Schnirelmann theory; Moser iteration; Schrödinger-Kirchhoff type problem; Lusternik-Schnirelmann theory
UR - http://eudml.org/doc/272888
ER -
References
top- [1] C.O. Alves and F.J.S.A. Corrêa, On existence of solutions for a class of problem involving a nonlinear operator. Commun. Appl. Nonlinear Anal.8 (2001) 43–56. Zbl1011.35058MR1837101
- [2] C.O. Alves, F.J.S.A. Corrêa and G.M. Figueiredo, On a class of nonlocal elliptic problems with critical growth. Differ. Equ. Appl.2 (2010) 409–417. Zbl1198.35281MR2731312
- [3] C.O. Alves, F.J.S.A. Corrêa and T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl.49 (2005) 85–93. Zbl1130.35045MR2123187
- [4] C.O. Alves and G.M. Figueiredo, Nonlinear perturbations of a periodic Kirchhoff equation in IRN. Nonlinear Anal.75 (2012) 2750–2759. Zbl1264.45008MR2878471
- [5] C.O. Alves and G.M. Figueiredo, Multiplicity of positive solutions for a quasilinear problem in IRN via penalization method. Adv. Nonlinear Stud.5 (2005) 551–572. Zbl1210.35086MR2180582
- [6] C.O. Alves, G.M. Figueiredo and M.F. Furtado, Multiple solutions for a Nonlinear Schrödinger Equation with Magnetic Fields. Commun. Partial Differ. Equ.36 (2011) 1–22. Zbl1231.35222MR2825603
- [7] A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical stats of nonlinear Schrodinger equations with potentials. Arch. Ration. Mech. Anal.140 (1997) 285–300. Zbl0896.35042MR1486895
- [8] A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schorodinger equations with potentials. Arch. Ration. Mech. Anal.159 (2001) 253–271. Zbl1040.35107MR1857674
- [9] G. Anelo, A uniqueness result for a nonlocal equation of Kirchhoff equation type and some related open problem. J. Math. Anal. Appl.373 (2011) 248–251. Zbl1203.35287MR2684475
- [10] G. Anelo, On a pertubed Dirichlet problem for a nonlocal differential equation of Kirchhoff type. BVP (2011) 891430. Zbl1207.35130MR2719293
- [11] S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrodinger equations with competing potential functions. J. Differ. Equ.160 (2000) 118–138. Zbl0952.35043MR1734531
- [12] M. Del Pino and P.L. Felmer, Local Mountain Pass for semilinear elliptic problems in unbounded domains. Calc. Var.4 (1996) 121–137. Zbl0844.35032MR1379196
- [13] I. Ekeland, On the variational principle. J. Math. Anal. Appl.47 (1974) 324–353. Zbl0286.49015MR346619
- [14] G.M. Figueiredo and J.R. Santos Junior, Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth. Differ. Integral Equ.25 (2012) 853–868. Zbl1274.35087MR2985683
- [15] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrodinger equation with a bounded potential. J. Funct. Anal.69 (1986) 397–408. Zbl0613.35076MR867665
- [16] X. He and W. Zou, Existence and concentration of positive solutions for a Kirchhoff equation in IR3. J. Differ. Equ.252 (2012) 1813–1834. Zbl1235.35093MR2853562
- [17] G. Kirchhoff, Mechanik. Teubner, Leipzig (1883).
- [18] Y. Li, F. Li and J. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ.253 (2012) 2285–2294. Zbl1259.35078MR2946973
- [19] G. Li, Some properties of weak solutions of nonlinear scalar field equations. Ann. Acad. Sci. Fenincae Ser. A14 (1989) 27–36. Zbl0729.35023MR1050779
- [20] J.L. Lions, On some questions in boundary value problems of mathematical physics International Symposium on Continuum, Mech. Partial Differ. Equ. Rio de Janeiro(1977). In vol. 30 of Math. Stud. North-Holland, Amsterdam (1978) 284–346. Zbl0404.35002MR519648
- [21] T.F. Ma, Remarks on an elliptic equation of Kirchhoff type. Nonlinear Anal.63 (2005) 1967–1977. Zbl1224.35140
- [22] J. Moser, A new proof de Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math.13 (1960) 457–468. Zbl0111.09301MR170091
- [23] Jianjun Nie and Xian Wu, Existence and multiplicity of non-trivial solutions for Schródinger–Kirchhoff equations with radial potential. Nonlinear Analysis75 (2012) 3470–3479. Zbl1239.35131MR2901330
- [24] P.H. Rabinowitz, On a class of nonlinear Schrodinger equations. Z. Angew Math. Phys.43 (1992) 27–42. Zbl0763.35087MR1162728
- [25] A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems. J. Funct. Anal.257 (2009) 3802–3822. Zbl1178.35352MR2557725
- [26] A. Szulkin and T. Weth, The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, edited by D.Y. Gao and D. Montreanu. International Press, Boston (2010) 597–632. Zbl1218.58010MR2768820
- [27] J. Wang, L. Tian, J. Xu and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ.253 (2012) 2314–2351. Zbl06071626MR2946975
- [28] M. Willem, Minimax Theorems. Birkhauser (1996). Zbl0856.49001MR1400007
- [29] Xian Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff-type equations in RN. Nonlinear Anal. RWA12 (2011) 1278–1287. Zbl1208.35034MR2736309
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.