Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via penalization method

Giovany M. Figueiredo; João R. Santos

ESAIM: Control, Optimisation and Calculus of Variations (2014)

  • Volume: 20, Issue: 2, page 389-415
  • ISSN: 1292-8119

Abstract

top
In this paper we are concerned with questions of multiplicity and concentration behavior of positive solutions of the elliptic problem ( P ) u = f ( u ) in 3 , u > 0 in 3 , u H 1 ( 3 ) , ( P ε ) ℒ ε u = f ( u ) in IR 3 , u > 0 in IR 3 , u ∈ H 1 ( IR 3 ) , whereε is a small positive parameter, f : ℝ → ℝ is a continuous function, ℒ ε is a nonlocal operator defined by u = M 1 3 | u | 2 + 1 3 3 V ( x ) u 2 - 2 Δ u + V ( x ) u , ℒ ε u = M 1 ε ∫ IR 3 | ∇ u | 2 + 1 ε 3 ∫ IR 3 V ( x ) u 2 [ − ε 2 Δ u + V ( x ) u ] ,M : IR+ → IR+ and V : IR3 → IR are continuous functions which verify some hypotheses.

How to cite

top

Figueiredo, Giovany M., and Santos, João R.. "Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via penalization method." ESAIM: Control, Optimisation and Calculus of Variations 20.2 (2014): 389-415. <http://eudml.org/doc/272888>.

@article{Figueiredo2014,
abstract = {In this paper we are concerned with questions of multiplicity and concentration behavior of positive solutions of the elliptic problem\[ (P\_\{\})\hspace*\{113.81102pt\} \left\lbrace \begin\{array\}\{rcl\} \mathcal \{L\}\_\{\}u=f(u) \ \ \mbox\{in\} \ \ \mathbb \{R\}^\{3\},\\[1.5mm] u&gt;0 \ \ \mbox\{in\} \ \ \mathbb \{R\}^\{3\},\\[1.5mm] u \in H^\{1\}(\mathbb \{R\}^3), \end\{array\} \right. \]( P ε ) ℒ ε u = f ( u ) in IR 3 , u &gt; 0 in IR 3 , u ∈ H 1 ( IR 3 ) , whereε is a small positive parameter, f : ℝ → ℝ is a continuous function,\[ \mathcal \{L\}\_\{\} \]ℒ ε is a nonlocal operator defined by\[ \mathcal \{L\}\_\{\}u=M\left(\frac\{1\}\{\}\int \_\{\mathbb \{R\}^\{3\}\}|\nabla u|^\{2\}+\frac\{1\}\{^\{3\}\}\int \_\{\mathbb \{R\}^\{3\}\}V(x)u^\{2\}\right)\left[-^\{2\}\Delta u + V(x)u \right], \]ℒ ε u = M 1 ε ∫ IR 3 | ∇ u | 2 + 1 ε 3 ∫ IR 3 V ( x ) u 2 [ − ε 2 Δ u + V ( x ) u ] ,M : IR+ → IR+ and V : IR3 → IR are continuous functions which verify some hypotheses.},
author = {Figueiredo, Giovany M., Santos, João R.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {penalization method; Schrödinger–Kirchhoff type problem; Lusternik–Schnirelmann theory; Moser iteration; Schrödinger-Kirchhoff type problem; Lusternik-Schnirelmann theory},
language = {eng},
number = {2},
pages = {389-415},
publisher = {EDP-Sciences},
title = {Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via penalization method},
url = {http://eudml.org/doc/272888},
volume = {20},
year = {2014},
}

TY - JOUR
AU - Figueiredo, Giovany M.
AU - Santos, João R.
TI - Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via penalization method
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2014
PB - EDP-Sciences
VL - 20
IS - 2
SP - 389
EP - 415
AB - In this paper we are concerned with questions of multiplicity and concentration behavior of positive solutions of the elliptic problem\[ (P_{})\hspace*{113.81102pt} \left\lbrace \begin{array}{rcl} \mathcal {L}_{}u=f(u) \ \ \mbox{in} \ \ \mathbb {R}^{3},\\[1.5mm] u&gt;0 \ \ \mbox{in} \ \ \mathbb {R}^{3},\\[1.5mm] u \in H^{1}(\mathbb {R}^3), \end{array} \right. \]( P ε ) ℒ ε u = f ( u ) in IR 3 , u &gt; 0 in IR 3 , u ∈ H 1 ( IR 3 ) , whereε is a small positive parameter, f : ℝ → ℝ is a continuous function,\[ \mathcal {L}_{} \]ℒ ε is a nonlocal operator defined by\[ \mathcal {L}_{}u=M\left(\frac{1}{}\int _{\mathbb {R}^{3}}|\nabla u|^{2}+\frac{1}{^{3}}\int _{\mathbb {R}^{3}}V(x)u^{2}\right)\left[-^{2}\Delta u + V(x)u \right], \]ℒ ε u = M 1 ε ∫ IR 3 | ∇ u | 2 + 1 ε 3 ∫ IR 3 V ( x ) u 2 [ − ε 2 Δ u + V ( x ) u ] ,M : IR+ → IR+ and V : IR3 → IR are continuous functions which verify some hypotheses.
LA - eng
KW - penalization method; Schrödinger–Kirchhoff type problem; Lusternik–Schnirelmann theory; Moser iteration; Schrödinger-Kirchhoff type problem; Lusternik-Schnirelmann theory
UR - http://eudml.org/doc/272888
ER -

References

top
  1. [1] C.O. Alves and F.J.S.A. Corrêa, On existence of solutions for a class of problem involving a nonlinear operator. Commun. Appl. Nonlinear Anal.8 (2001) 43–56. Zbl1011.35058MR1837101
  2. [2] C.O. Alves, F.J.S.A. Corrêa and G.M. Figueiredo, On a class of nonlocal elliptic problems with critical growth. Differ. Equ. Appl.2 (2010) 409–417. Zbl1198.35281MR2731312
  3. [3] C.O. Alves, F.J.S.A. Corrêa and T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl.49 (2005) 85–93. Zbl1130.35045MR2123187
  4. [4] C.O. Alves and G.M. Figueiredo, Nonlinear perturbations of a periodic Kirchhoff equation in IRN. Nonlinear Anal.75 (2012) 2750–2759. Zbl1264.45008MR2878471
  5. [5] C.O. Alves and G.M. Figueiredo, Multiplicity of positive solutions for a quasilinear problem in IRN via penalization method. Adv. Nonlinear Stud.5 (2005) 551–572. Zbl1210.35086MR2180582
  6. [6] C.O. Alves, G.M. Figueiredo and M.F. Furtado, Multiple solutions for a Nonlinear Schrödinger Equation with Magnetic Fields. Commun. Partial Differ. Equ.36 (2011) 1–22. Zbl1231.35222MR2825603
  7. [7] A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical stats of nonlinear Schrodinger equations with potentials. Arch. Ration. Mech. Anal.140 (1997) 285–300. Zbl0896.35042MR1486895
  8. [8] A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schorodinger equations with potentials. Arch. Ration. Mech. Anal.159 (2001) 253–271. Zbl1040.35107MR1857674
  9. [9] G. Anelo, A uniqueness result for a nonlocal equation of Kirchhoff equation type and some related open problem. J. Math. Anal. Appl.373 (2011) 248–251. Zbl1203.35287MR2684475
  10. [10] G. Anelo, On a pertubed Dirichlet problem for a nonlocal differential equation of Kirchhoff type. BVP (2011) 891430. Zbl1207.35130MR2719293
  11. [11] S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrodinger equations with competing potential functions. J. Differ. Equ.160 (2000) 118–138. Zbl0952.35043MR1734531
  12. [12] M. Del Pino and P.L. Felmer, Local Mountain Pass for semilinear elliptic problems in unbounded domains. Calc. Var.4 (1996) 121–137. Zbl0844.35032MR1379196
  13. [13] I. Ekeland, On the variational principle. J. Math. Anal. Appl.47 (1974) 324–353. Zbl0286.49015MR346619
  14. [14] G.M. Figueiredo and J.R. Santos Junior, Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth. Differ. Integral Equ.25 (2012) 853–868. Zbl1274.35087MR2985683
  15. [15] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrodinger equation with a bounded potential. J. Funct. Anal.69 (1986) 397–408. Zbl0613.35076MR867665
  16. [16] X. He and W. Zou, Existence and concentration of positive solutions for a Kirchhoff equation in IR3. J. Differ. Equ.252 (2012) 1813–1834. Zbl1235.35093MR2853562
  17. [17] G. Kirchhoff, Mechanik. Teubner, Leipzig (1883). 
  18. [18] Y. Li, F. Li and J. Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ.253 (2012) 2285–2294. Zbl1259.35078MR2946973
  19. [19] G. Li, Some properties of weak solutions of nonlinear scalar field equations. Ann. Acad. Sci. Fenincae Ser. A14 (1989) 27–36. Zbl0729.35023MR1050779
  20. [20] J.L. Lions, On some questions in boundary value problems of mathematical physics International Symposium on Continuum, Mech. Partial Differ. Equ. Rio de Janeiro(1977). In vol. 30 of Math. Stud. North-Holland, Amsterdam (1978) 284–346. Zbl0404.35002MR519648
  21. [21] T.F. Ma, Remarks on an elliptic equation of Kirchhoff type. Nonlinear Anal.63 (2005) 1967–1977. Zbl1224.35140
  22. [22] J. Moser, A new proof de Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math.13 (1960) 457–468. Zbl0111.09301MR170091
  23. [23] Jianjun Nie and Xian Wu, Existence and multiplicity of non-trivial solutions for Schródinger–Kirchhoff equations with radial potential. Nonlinear Analysis75 (2012) 3470–3479. Zbl1239.35131MR2901330
  24. [24] P.H. Rabinowitz, On a class of nonlinear Schrodinger equations. Z. Angew Math. Phys.43 (1992) 27–42. Zbl0763.35087MR1162728
  25. [25] A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems. J. Funct. Anal.257 (2009) 3802–3822. Zbl1178.35352MR2557725
  26. [26] A. Szulkin and T. Weth, The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, edited by D.Y. Gao and D. Montreanu. International Press, Boston (2010) 597–632. Zbl1218.58010MR2768820
  27. [27] J. Wang, L. Tian, J. Xu and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ.253 (2012) 2314–2351. Zbl06071626MR2946975
  28. [28] M. Willem, Minimax Theorems. Birkhauser (1996). Zbl0856.49001MR1400007
  29. [29] Xian Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff-type equations in RN. Nonlinear Anal. RWA12 (2011) 1278–1287. Zbl1208.35034MR2736309

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.