Page 1

Displaying 1 – 16 of 16

Showing per page

Correctors and field fluctuations for the pϵ(x)-laplacian with rough exponents : The sublinear growth case

Silvia Jimenez (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A corrector theory for the strong approximation of gradient fields inside periodic composites made from two materials with different power law behavior is provided. Each material component has a distinctly different exponent appearing in the constitutive law relating gradient to flux. The correctors are used to develop bounds on the local singularity strength for gradient fields inside micro-structured media. The bounds are multi-scale in nature and can be used to measure the amplification of applied...

Elliptic equations of higher stochastic order

Sergey V. Lototsky, Boris L. Rozovskii, Xiaoliang Wan (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper discusses analytical and numerical issues related to elliptic equations with random coefficients which are generally nonlinear functions of white noise. Singularity issues are avoided by using the Itô-Skorohod calculus to interpret the interactions between the coefficients and the solution. The solution is constructed by means of the Wiener Chaos (Cameron-Martin) expansions. The existence and uniqueness of the solutions are established under rather weak assumptions, the main of which...

Estimates of the principal eigenvalue of the p -Laplacian and the p -biharmonic operator

Jiří Benedikt (2015)

Mathematica Bohemica

We survey recent results concerning estimates of the principal eigenvalue of the Dirichlet p -Laplacian and the Navier p -biharmonic operator on a ball of radius R in N and its asymptotics for p approaching 1 and . Let p tend to . There is a critical radius R C of the ball such that the principal eigenvalue goes to for 0 < R R C and to 0 for R > R C . The critical radius is R C = 1 for any N for the p -Laplacian and R C = 2 N in the case of the p -biharmonic operator. When p approaches 1 , the principal eigenvalue of the Dirichlet...

Existence and nonexistence of solutions for a quasilinear elliptic system

Qin Li, Zuodong Yang (2015)

Annales Polonici Mathematici

By a sub-super solution argument, we study the existence of positive solutions for the system ⎧ - Δ p u = a ( x ) F ( x , u , v ) in Ω, ⎪ - Δ q v = a ( x ) F ( x , u , v ) in Ω, ⎨u,v > 0 in Ω, ⎩u = v = 0 on ∂Ω, where Ω is a bounded domain in N with smooth boundary or Ω = N . A nonexistence result is obtained for radially symmetric solutions.

Gradient regularity via rearrangements for p -Laplacian type elliptic boundary value problems

Andrea Cianchi, Vladimir G. Maz'ya (2014)

Journal of the European Mathematical Society

A sharp estimate for the decreasing rearrangement of the length of the gradient of solutions to a class of nonlinear Dirichlet and Neumann elliptic boundary value problems is established under weak regularity assumptions on the domain. As a consequence, the problem of gradient bounds in norms depending on global integrability properties is reduced to one-dimensional Hardy-type inequalities. Applications to gradient estimates in Lebesgue, Lorentz, Zygmund, and Orlicz spaces are presented.

Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via penalization method

Giovany M. Figueiredo, João R. Santos (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we are concerned with questions of multiplicity and concentration behavior of positive solutions of the elliptic problem ( P ) u = f ( u ) in 3 , u &gt; 0 in 3 , u H 1 ( 3 ) , ( P ε ) ℒ ε u = f ( u ) in IR 3 , u &gt; 0 in IR 3 , u ∈ H 1 ( IR 3 ) , whereε is a small positive parameter, f : ℝ → ℝ is a continuous function, ℒ ε is a nonlocal operator defined by u = M 1 3 | u | 2 + 1 3 3 V ( x ) u 2 - 2 Δ u + V ( x ) u , ℒ ε u = M 1 ε ∫ IR 3 | ∇ u | 2 + 1 ε 3 ∫ IR 3 V ( x ) u 2 [ − ε 2 Δ u + V ( x ) u ] ,M : IR+ → IR+ and V : IR3 → IR are continuous functions which verify some hypotheses.

Three solutions for a nonlinear Neumann boundary value problem

Najib Tsouli, Omar Chakrone, Omar Darhouche, Mostafa Rahmani (2014)

Applicationes Mathematicae

The aim of this paper is to establish the existence of at least three solutions for the nonlinear Neumann boundary-value problem involving the p(x)-Laplacian of the form - Δ p ( x ) u + a ( x ) | u | p ( x ) - 2 u = μ g ( x , u ) in Ω, | u | p ( x ) - 2 u / ν = λ f ( x , u ) on ∂Ω. Our technical approach is based on the three critical points theorem due to Ricceri.

T-p(x)-solutions for nonlinear elliptic equations with an L¹-dual datum

El Houssine Azroul, Abdelkrim Barbara, Meryem El Lekhlifi, Mohamed Rhoudaf (2012)

Applicationes Mathematicae

We establish the existence of a T-p(x)-solution for the p(x)-elliptic problem - d i v ( a ( x , u , u ) ) + g ( x , u ) = f - d i v F in Ω, where Ω is a bounded open domain of N , N ≥ 2 and a : Ω × × N N is a Carathéodory function satisfying the natural growth condition and the coercivity condition, but with only a weak monotonicity condition. The right hand side f lies in L¹(Ω) and F belongs to i = 1 N L p ' ( · ) ( Ω ) .

Currently displaying 1 – 16 of 16

Page 1