On convex sets that minimize the average distance

Antoine Lemenant; Edoardo Mainini

ESAIM: Control, Optimisation and Calculus of Variations (2012)

  • Volume: 18, Issue: 4, page 1049-1072
  • ISSN: 1292-8119

Abstract

top
In this paper we study the compact and convex sets K ⊆ Ω ⊆ ℝ2that minimize Ω ( , K ) d + λ 1 Vol ( K ) + λ 2 Per ( K ) ∫ Ω dist ( x ,K ) d x + λ 1 Vol ( K ) + λ 2 Per ( K ) for some constantsλ1 and λ2, that could possibly be zero. We compute in particular the second order derivative of the functional and use it to exclude smooth points of positive curvature for the problem with volume constraint. The problem with perimeter constraint behaves differently since polygons are never minimizers. Finally using a purely geometrical argument from Tilli [J. Convex Anal. 17 (2010) 583–595] we can prove that any arbitrary convex set can be a minimizer when both perimeter and volume constraints are considered.

How to cite

top

Lemenant, Antoine, and Mainini, Edoardo. "On convex sets that minimize the average distance." ESAIM: Control, Optimisation and Calculus of Variations 18.4 (2012): 1049-1072. <http://eudml.org/doc/272890>.

@article{Lemenant2012,
abstract = {In this paper we study the compact and convex sets K ⊆ Ω ⊆ ℝ2that minimize\begin\{equation*\} \int \_\{\Omega \} (,K) \,\{\rm d\}+ \lambda \_1 \{\rm Vol\}(K)+\lambda \_2 \{\rm Per\}(K) \end\{equation*\}∫ Ω dist ( x ,K ) d x + λ 1 Vol ( K ) + λ 2 Per ( K ) for some constantsλ1 and λ2, that could possibly be zero. We compute in particular the second order derivative of the functional and use it to exclude smooth points of positive curvature for the problem with volume constraint. The problem with perimeter constraint behaves differently since polygons are never minimizers. Finally using a purely geometrical argument from Tilli [J. Convex Anal. 17 (2010) 583–595] we can prove that any arbitrary convex set can be a minimizer when both perimeter and volume constraints are considered.},
author = {Lemenant, Antoine, Mainini, Edoardo},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {shape optimization; distance functional; optimality conditions; convex analysis; second order variation; gamma-convergence; -convergence},
language = {eng},
number = {4},
pages = {1049-1072},
publisher = {EDP-Sciences},
title = {On convex sets that minimize the average distance},
url = {http://eudml.org/doc/272890},
volume = {18},
year = {2012},
}

TY - JOUR
AU - Lemenant, Antoine
AU - Mainini, Edoardo
TI - On convex sets that minimize the average distance
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2012
PB - EDP-Sciences
VL - 18
IS - 4
SP - 1049
EP - 1072
AB - In this paper we study the compact and convex sets K ⊆ Ω ⊆ ℝ2that minimize\begin{equation*} \int _{\Omega } (,K) \,{\rm d}+ \lambda _1 {\rm Vol}(K)+\lambda _2 {\rm Per}(K) \end{equation*}∫ Ω dist ( x ,K ) d x + λ 1 Vol ( K ) + λ 2 Per ( K ) for some constantsλ1 and λ2, that could possibly be zero. We compute in particular the second order derivative of the functional and use it to exclude smooth points of positive curvature for the problem with volume constraint. The problem with perimeter constraint behaves differently since polygons are never minimizers. Finally using a purely geometrical argument from Tilli [J. Convex Anal. 17 (2010) 583–595] we can prove that any arbitrary convex set can be a minimizer when both perimeter and volume constraints are considered.
LA - eng
KW - shape optimization; distance functional; optimality conditions; convex analysis; second order variation; gamma-convergence; -convergence
UR - http://eudml.org/doc/272890
ER -

References

top
  1. [1] L. Ambrosio and C. Mantegazza, Curvature and distance function from a manifold. J. Geom. Anal. 8 (1998) 723–748. Dedicated to the memory of Fred Almgren. Zbl0941.53009MR1731060
  2. [2] L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math.43 (1990) 999–1036. Zbl0722.49020MR1075076
  3. [3] D. Bucur, I. Fragalà and J. Lamboley, Optimal convex shapes for concave functionals. ESAIM : COCV (in press). Zbl1253.49031
  4. [4] G. Buttazzo and P. Guasoni, Shape optimization problems over classes of convex domains. J. Convex Anal.4 (1997) 343–351. Zbl0921.49030MR1613491
  5. [5] G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks. Netw. Heterog. Media 2 (2007) 761–777 (electronic). Zbl1223.49017MR2357768
  6. [6] G. Buttazzo and E. Stepanov, Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem. Ann. Scuola Norm. Super. Pisa Cl. Sci.2 (2003) 631–678. Zbl1127.49031MR2040639
  7. [7] G. Buttazzo, E. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions, in Variational methods for discontinuous structures, Progr. Nonlinear Differential Equations Appl. 51. Birkhäuser, Basel (2002) 41–65. Zbl1055.49029MR2197837
  8. [8] G. Buttazzo, A. Pratelli, S. Solimini and E. Stepanov, Optimal urban networks via mass transportation, Lecture Notes in Mathematics 1961. Springer-Verlag, Berlin (2009). Zbl1190.90003MR2469110
  9. [9] G. Buttazzo, E. Mainini and E. Stepanov, Stationary configurations for the average distance functional and related problems. Control Cybernet.38 (2009) 1107–1130. Zbl1239.49029MR2779113
  10. [10] M.C. Delfour and J.-P. Zolésio, Shape analysis via distance functions : local theory, in Boundaries, interfaces, and transitions (Banff, AB, 1995), CRM Proc. Lect. Notes 13. Amer. Math. Soc. Providence, RI (1998) 91–123. Zbl0955.49023MR1619113
  11. [11] H. Federer, Curvature measures. Trans. Amer. Math. Soc.93 (1959) 418–491. Zbl0089.38402MR110078
  12. [12] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York (1969). Zbl0176.00801MR257325
  13. [13] A. Henrot and M. Pierre, Variation et optimisation de formes, Mathématiques & Applications (Berlin) [Mathematics & Applications] 48. Springer, Berlin (2005). Une analyse géométrique [a geometric analysis]. Zbl1098.49001MR2512810
  14. [14] A. Lemenant, About the regularity of average distance minimizers in R2. J. Convex Anal.18 (2011) 949–981. Zbl1238.49054MR2917861
  15. [15] A. Lemenant, A presentation of the average distance minimizing problem. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 390 (2010) 117–146 (Proceedings of St. Petersburg Seminar, available online at http://www.pdmi.ras.ru/znsl/2011/v390/abs117.html). Zbl1253.49037
  16. [16] C. Mantegazza and A. Mennucci, Hamilton-jacobi equations and distance functions on riemannian manifolds. Appl. Math. Optim.47 (2003) 1–25. Zbl1048.49021MR1941909
  17. [17] L. Modica and S. Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A14 (1977) 526–529. Zbl0364.49006MR473971
  18. [18] E. Paolini and E. Stepanov, Qualitative properties of maximum distance minimizers and average distance minimizers in Rn. J. Math. Sci. (N. Y.) 122 (2004) 3290–3309. Problems in mathematical analysis. Zbl1099.49029MR2084183
  19. [19] F. Santambrogio and P. Tilli, Blow-up of optimal sets in the irrigation problem. J. Geom. Anal.15 (2005) 343–362. Zbl1115.49029MR2152486
  20. [20] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis 3. Australian National University, Australian National University Centre for Mathematical Analysis, Canberra (1983). Zbl0546.49019MR756417
  21. [21] E. Stepanov, Partial geometric regularity of some optimal connected transportation networks. J. Math. Sci. (N.Y.) 132 (2006) 522–552. Problems in mathematical analysis. Zbl1121.49039MR2197342
  22. [22] P. Tilli, Some explicit examples of minimizers for the irrigation problem. J. Convex Anal.17 (2010) 583–595. Zbl1191.49047MR2675664

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.