On convex sets that minimize the average distance
Antoine Lemenant; Edoardo Mainini
ESAIM: Control, Optimisation and Calculus of Variations (2012)
- Volume: 18, Issue: 4, page 1049-1072
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topLemenant, Antoine, and Mainini, Edoardo. "On convex sets that minimize the average distance." ESAIM: Control, Optimisation and Calculus of Variations 18.4 (2012): 1049-1072. <http://eudml.org/doc/272890>.
@article{Lemenant2012,
abstract = {In this paper we study the compact and convex sets K ⊆ Ω ⊆ ℝ2that minimize\begin\{equation*\} \int \_\{\Omega \} (,K) \,\{\rm d\}+ \lambda \_1 \{\rm Vol\}(K)+\lambda \_2 \{\rm Per\}(K) \end\{equation*\}∫ Ω dist ( x ,K ) d x + λ 1 Vol ( K ) + λ 2 Per ( K ) for some constantsλ1 and λ2, that could possibly be zero. We compute in particular the second order derivative of the functional and use it to exclude smooth points of positive curvature for the problem with volume constraint. The problem with perimeter constraint behaves differently since polygons are never minimizers. Finally using a purely geometrical argument from Tilli [J. Convex Anal. 17 (2010) 583–595] we can prove that any arbitrary convex set can be a minimizer when both perimeter and volume constraints are considered.},
author = {Lemenant, Antoine, Mainini, Edoardo},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {shape optimization; distance functional; optimality conditions; convex analysis; second order variation; gamma-convergence; -convergence},
language = {eng},
number = {4},
pages = {1049-1072},
publisher = {EDP-Sciences},
title = {On convex sets that minimize the average distance},
url = {http://eudml.org/doc/272890},
volume = {18},
year = {2012},
}
TY - JOUR
AU - Lemenant, Antoine
AU - Mainini, Edoardo
TI - On convex sets that minimize the average distance
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2012
PB - EDP-Sciences
VL - 18
IS - 4
SP - 1049
EP - 1072
AB - In this paper we study the compact and convex sets K ⊆ Ω ⊆ ℝ2that minimize\begin{equation*} \int _{\Omega } (,K) \,{\rm d}+ \lambda _1 {\rm Vol}(K)+\lambda _2 {\rm Per}(K) \end{equation*}∫ Ω dist ( x ,K ) d x + λ 1 Vol ( K ) + λ 2 Per ( K ) for some constantsλ1 and λ2, that could possibly be zero. We compute in particular the second order derivative of the functional and use it to exclude smooth points of positive curvature for the problem with volume constraint. The problem with perimeter constraint behaves differently since polygons are never minimizers. Finally using a purely geometrical argument from Tilli [J. Convex Anal. 17 (2010) 583–595] we can prove that any arbitrary convex set can be a minimizer when both perimeter and volume constraints are considered.
LA - eng
KW - shape optimization; distance functional; optimality conditions; convex analysis; second order variation; gamma-convergence; -convergence
UR - http://eudml.org/doc/272890
ER -
References
top- [1] L. Ambrosio and C. Mantegazza, Curvature and distance function from a manifold. J. Geom. Anal. 8 (1998) 723–748. Dedicated to the memory of Fred Almgren. Zbl0941.53009MR1731060
- [2] L. Ambrosio and V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math.43 (1990) 999–1036. Zbl0722.49020MR1075076
- [3] D. Bucur, I. Fragalà and J. Lamboley, Optimal convex shapes for concave functionals. ESAIM : COCV (in press). Zbl1253.49031
- [4] G. Buttazzo and P. Guasoni, Shape optimization problems over classes of convex domains. J. Convex Anal.4 (1997) 343–351. Zbl0921.49030MR1613491
- [5] G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks. Netw. Heterog. Media 2 (2007) 761–777 (electronic). Zbl1223.49017MR2357768
- [6] G. Buttazzo and E. Stepanov, Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem. Ann. Scuola Norm. Super. Pisa Cl. Sci.2 (2003) 631–678. Zbl1127.49031MR2040639
- [7] G. Buttazzo, E. Oudet and E. Stepanov, Optimal transportation problems with free Dirichlet regions, in Variational methods for discontinuous structures, Progr. Nonlinear Differential Equations Appl. 51. Birkhäuser, Basel (2002) 41–65. Zbl1055.49029MR2197837
- [8] G. Buttazzo, A. Pratelli, S. Solimini and E. Stepanov, Optimal urban networks via mass transportation, Lecture Notes in Mathematics 1961. Springer-Verlag, Berlin (2009). Zbl1190.90003MR2469110
- [9] G. Buttazzo, E. Mainini and E. Stepanov, Stationary configurations for the average distance functional and related problems. Control Cybernet.38 (2009) 1107–1130. Zbl1239.49029MR2779113
- [10] M.C. Delfour and J.-P. Zolésio, Shape analysis via distance functions : local theory, in Boundaries, interfaces, and transitions (Banff, AB, 1995), CRM Proc. Lect. Notes 13. Amer. Math. Soc. Providence, RI (1998) 91–123. Zbl0955.49023MR1619113
- [11] H. Federer, Curvature measures. Trans. Amer. Math. Soc.93 (1959) 418–491. Zbl0089.38402MR110078
- [12] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York (1969). Zbl0176.00801MR257325
- [13] A. Henrot and M. Pierre, Variation et optimisation de formes, Mathématiques & Applications (Berlin) [Mathematics & Applications] 48. Springer, Berlin (2005). Une analyse géométrique [a geometric analysis]. Zbl1098.49001MR2512810
- [14] A. Lemenant, About the regularity of average distance minimizers in R2. J. Convex Anal.18 (2011) 949–981. Zbl1238.49054MR2917861
- [15] A. Lemenant, A presentation of the average distance minimizing problem. Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 390 (2010) 117–146 (Proceedings of St. Petersburg Seminar, available online at http://www.pdmi.ras.ru/znsl/2011/v390/abs117.html). Zbl1253.49037
- [16] C. Mantegazza and A. Mennucci, Hamilton-jacobi equations and distance functions on riemannian manifolds. Appl. Math. Optim.47 (2003) 1–25. Zbl1048.49021MR1941909
- [17] L. Modica and S. Mortola, Il limite nella Γ-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A14 (1977) 526–529. Zbl0364.49006MR473971
- [18] E. Paolini and E. Stepanov, Qualitative properties of maximum distance minimizers and average distance minimizers in Rn. J. Math. Sci. (N. Y.) 122 (2004) 3290–3309. Problems in mathematical analysis. Zbl1099.49029MR2084183
- [19] F. Santambrogio and P. Tilli, Blow-up of optimal sets in the irrigation problem. J. Geom. Anal.15 (2005) 343–362. Zbl1115.49029MR2152486
- [20] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis 3. Australian National University, Australian National University Centre for Mathematical Analysis, Canberra (1983). Zbl0546.49019MR756417
- [21] E. Stepanov, Partial geometric regularity of some optimal connected transportation networks. J. Math. Sci. (N.Y.) 132 (2006) 522–552. Problems in mathematical analysis. Zbl1121.49039MR2197342
- [22] P. Tilli, Some explicit examples of minimizers for the irrigation problem. J. Convex Anal.17 (2010) 583–595. Zbl1191.49047MR2675664
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.