Dimension reduction for functionals on solenoidal vector fields
ESAIM: Control, Optimisation and Calculus of Variations (2012)
- Volume: 18, Issue: 1, page 259-276
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Alama, L. Bronsard and B. Galvão-Sousa, Thin film limits for Ginzburg-Landau for strong applied magnetic fields. SIAM J. Math. Anal.42 (2010) 97–124. Zbl1210.35242MR2596547
- [2] N. Ansini and A. Garroni, Γ-convergence of functionals on divergence-free fields. ESAIM : COCV 13 (2007) 809–828. Zbl1127.49011MR2351405
- [3] J.M. Ball, A version of the fundamental theorem for young measures, in PDEs and continuum models of phase transitions – Proceedings of an NSF-CNRS joint seminar held in Nice, France, January 18–22, 1988, Lect. Notes Phys. 344, M. Rascle, D. Serre and M. Slemrod Eds., Springer, Berlin etc. (1989) 207–215. Zbl0991.49500MR1036070
- [4] A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press, Oxford (2002). Zbl1198.49001MR1968440
- [5] A. Braides, I. Fonseca and G. Leoni, A-quasiconvexity : Relaxation and homogenization. ESAIM : COCV 5 (2000) 539–577. Zbl0971.35010MR1799330
- [6] A. Contreras and P. Sternberg, Γ-convergence and the emergence of vortices for Ginzburg-Landau on thin shells and manifolds. Calc. Var. Partial Differ. Equ.38 (2010) 243–274. Zbl1193.49053MR2610532
- [7] G. Dal Maso, An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications 8. Birkhäuser, Basel (1993). Zbl0816.49001MR1201152
- [8] G. Dal Maso, I. Fonseca and G. Leoni, Nonlocal character of the reduced theory of thin films with higher order perturbations. Adv. Calc. Var.3 (2010) 287–319. Zbl1195.49019MR2660690
- [9] E. De Giorgi and G. Dal Maso, Gamma-convergence and calculus of variations, in Mathematical theories of optimization, Proc. Conf., Genova, 1981, Lect. Notes Math. 979 (1983) 121–143. Zbl0511.49007MR713808
- [10] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 58 (1975) 842–850. Zbl0339.49005MR448194
- [11] I. Ekeland and R. Temam, Convex analysis and variational problems, Studies in Mathematics and its Applications 1. North-Holland Publishing Company, Amsterdam, Oxford (1976). Zbl0322.90046MR463994
- [12] I. Fonseca and S. Krömer, Multiple integrals under differential constraints : two-scale convergence and homogenization. Indiana Univ. Math. J.59 (2010) 427–457. Zbl1198.49011MR2648074
- [13] I. Fonseca and G. Leoni, Modern methods in the calculus of variations. Lp spaces. Springer Monographs in Mathematics, New York, Springer (2007). Zbl1153.49001MR2341508
- [14] I. Fonseca and S. Müller, 𝒜-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999) 1355–1390. Zbl0940.49014MR1718306
- [15] G. Friesecke, R.D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal.180 (2006) 183–236. Zbl1100.74039MR2210909
- [16] A. Garroni and V. Nesi, Rigidity and lack of rigidity for solenoidal matrix fields. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 460 (2004) 1789–1806. Zbl1108.74050MR2067561
- [17] E. Giusti, Direct methods in the calculus of variations. World Scientific, Singapore (2003). Zbl1028.49001MR1962933
- [18] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl., IX. Sér. 74 (1995) 549–578. Zbl0847.73025MR1365259
- [19] H. Le Dret and A. Raoult, The membrane shell model in nonlinear elasticity : A variational asymptotic derivation. J. Nonlinear Sci.6 (1996) 59–84. Zbl0844.73045MR1375820
- [20] H. Le Dret and A. Raoult, Variational convergence for nonlinear shell models with directors and related semicontinuity and relaxation results. Arch. Ration. Mech. Anal.154 (2000) 101–134. Zbl0969.74040MR1784962
- [21] J. Lee, P.F.X. Müller and S. Müller, Compensated compactness, separately convex functions and interpolatory estimates between Riesz transforms and Haar projections. Preprint MPI-MIS 7/2008. Zbl1230.49009
- [22] M. Lewicka and R. Pakzad, The infinite hierarchy of elastic shell models : some recent results and a conjecture. Fields Institute Communications (to appear). Zbl1263.74035
- [23] M. Lewicka, L. Mahadevan and R. Pakzad, The Föppl-von Kármán equations for plates with incompatible strains. Proc. Roy. Soc. A (to appear). Zbl1219.74027
- [24] S. Müller, Rank-one convexity implies quasiconvexity on diagonal matrices. Int. Math. Res. Not.1999 (1999) 1087–1095. Zbl1055.49506MR1728018
- [25] S. Müller, Variational models for microstructure and phase transisions, in Calculus of variations and geometric evolution problems – Lectures given at the 2nd session of the Centro Internazionale Matematico Estivo (CIME), Cetraro, Italy, June 15–22, 1996, Lect. Notes Math. 1713, S. Hildebrandt Ed., Springer, Berlin (1999) 85–210. Zbl0968.74050MR1731640
- [26] F. Murat, Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 8 (1981) 69–102. Zbl0464.46034MR616901
- [27] M. Palombaro, Rank-(n-1) convexity and quasiconvexity for divergence free fields. Adv. Calc. Var3 (2010) 279–285. Zbl1195.49022MR2660689
- [28] M. Palombaro and V.P. Smyshlyaev, Relaxation of three solenoidal wells and characterization of extremal three-phase H-measures. Arch. Ration. Mech. Anal.194 (2009) 775–822. Zbl1176.49022MR2563624
- [29] P. Pedregal, Parametrized measures and variational principles, Progress in Nonlinear Differential Equations and their Applications 30. Birkhäuser, Basel (1997). Zbl0879.49017MR1452107
- [30] R.T. Rockafellar, Convex analysis. Princeton University Press, Princeton, NJ (1970). Zbl0932.90001MR274683
- [31] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics : Heriot-Watt Symp. 4, Edinburgh, Res. Notes Math. 39 (1979) 136–212. Zbl0437.35004MR584398