Lipschitz regularity for some asymptotically convex problems

Lars Diening; Bianca Stroffolini; Anna Verde

ESAIM: Control, Optimisation and Calculus of Variations (2011)

  • Volume: 17, Issue: 1, page 178-189
  • ISSN: 1292-8119

Abstract

top
We establish a local Lipschitz regularity result for local minimizers of asymptotically convex variational integrals.

How to cite

top

Diening, Lars, Stroffolini, Bianca, and Verde, Anna. "Lipschitz regularity for some asymptotically convex problems." ESAIM: Control, Optimisation and Calculus of Variations 17.1 (2011): 178-189. <http://eudml.org/doc/272925>.

@article{Diening2011,
abstract = {We establish a local Lipschitz regularity result for local minimizers of asymptotically convex variational integrals.},
author = {Diening, Lars, Stroffolini, Bianca, Verde, Anna},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {local minimizers; decay estimates; asymptotic behaviour; Lipschitz regularity; local minimizer; variational integral},
language = {eng},
number = {1},
pages = {178-189},
publisher = {EDP-Sciences},
title = {Lipschitz regularity for some asymptotically convex problems},
url = {http://eudml.org/doc/272925},
volume = {17},
year = {2011},
}

TY - JOUR
AU - Diening, Lars
AU - Stroffolini, Bianca
AU - Verde, Anna
TI - Lipschitz regularity for some asymptotically convex problems
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2011
PB - EDP-Sciences
VL - 17
IS - 1
SP - 178
EP - 189
AB - We establish a local Lipschitz regularity result for local minimizers of asymptotically convex variational integrals.
LA - eng
KW - local minimizers; decay estimates; asymptotic behaviour; Lipschitz regularity; local minimizer; variational integral
UR - http://eudml.org/doc/272925
ER -

References

top
  1. [1] E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case 1&lt;p&lt;2. J. Math. Anal. Appl. 140 (1989) 115–135. Zbl0686.49004MR997847
  2. [2] E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal.156 (2001) 121–140. Zbl0984.49020MR1814973
  3. [3] E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal.164 (2002) 213–259. Zbl1038.76058MR1930392
  4. [4] M. Chipot and L.C. Evans, Linearization at infinity and Lipschitz estimate for certain problems in the Calculus of Variations. Proc. Roy. Soc. Edinburgh Sect. A102 (1986) 291–303. Zbl0602.49029MR852362
  5. [5] A. Cianchi, Some results in the theory of Orlicz spaces and applications to variational problems, in Nonlinear Analysis, Function Spaces and Applications 6, Acad. Sci. Czech Repub., Prague, Czech Republic (1999) 50–92. Zbl0965.46017MR1777712
  6. [6] A. Cianchi and N. Fusco, Gradient regularity for minimizers under general growth conditions. J. Reine Angew. Math.507 (1999) 15–36. Zbl0913.49024MR1670258
  7. [7] M. Cupini, M. Guidorzi and E. Mascolo, Regularity of minimizers of vectorial integrals with p-q growth. Nonlinear Anal.54 (2003) 591–616. Zbl1027.49032MR1983438
  8. [8] L. Diening and F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth. Forum Math.20 (2008) 523–556. Zbl1188.35069MR2418205
  9. [9] L. Diening, B. Stroffolini and A. Verde, Regularity of functionals with ϕ-growth. Manuscripta Math. 129 (2009) 449–481. Zbl1168.49035MR2520895
  10. [10] G. Dolzmann and J. Kristensen, Higher integrability of minimizing Young measures. Calc. Var. Partial Differ. Equ.22 (2005) 283–301. Zbl1092.49016MR2118900
  11. [11] M. Foss, Global regularity for almost minimizers of nonconvex variational problems. Ann. Mat. Pura Appl.187 (2008) 263–321. Zbl1223.49041MR2372803
  12. [12] M. Foss, A. Passarelli di Napoli and A. Verde, Global Morrey regularity results for asymptotically convex variational problems. Forum Math.20 (2008) 921–953. Zbl1147.49029MR2445123
  13. [13] M. Fuchs, Regularity for a class of variational integrals motivated by nonlinear elasticity. Asymptotic Anal.9 (1994) 23–38. Zbl0809.49010MR1285014
  14. [14] M. Fuchs, Lipschitz regularity for certain problems from relaxation. Asymptotic Anal.12 (1996) 145–151. Zbl0883.49028MR1386228
  15. [15] M. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscripta Math.57 (1986) 55–99. Zbl0607.49003MR866406
  16. [16] J. Kristensen and A. Taheri, Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Ration. Mech. Anal.170 (2003) 63–89. Zbl1030.49040MR2012647
  17. [17] C. Leone, A. Passarelli di Napoli and A. Verde, Lipschitz regularity for some asymptotically subquadratic problems. Nonlinear Anal.67 (2007) 1532–1539. Zbl1113.49042MR2323300
  18. [18] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal.105 (1989) 267–284. Zbl0667.49032MR969900
  19. [19] P. Marcellini, Regularity and existence of solutions of elliptic equations with p,q-growth conditions. J. Diff. Eq.90 (1991) 1–30. Zbl0724.35043MR1094446
  20. [20] P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Pisa23 (1996) 1–25. Zbl0922.35031MR1401415
  21. [21] P. Marcellini and G. Papi, Nonlinear elliptic systems with general growth. J. Diff. Eq.221 (2006) 412–443. Zbl1330.35131MR2196484
  22. [22] G.R. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations. Appl. Math.51 (2006) 355–426. Zbl1164.49324MR2291779
  23. [23] A. Passarelli di Napoli and A. Verde, A regularity result for asymptotically convex problems with lower order terms. J. Convex Anal.15 (2008) 131–148. Zbl1245.35009MR2389007
  24. [24] J.P. Raymond, Lipschitz regularity of solutions of some asymptotically convex problems Proc. Roy. Soc. Edinburgh Sect. A117 (1991) 59–73. Zbl0725.49012MR1096219
  25. [25] M. Ružička and L. Diening, Non-Newtonian fluids and function spaces, in Nonlinear Analysis, Function Spaces and Applications 8, Acad. Sci. Czech Repub., Prague, Czech Republic (2007) 95–143. Zbl1289.35104MR2657118
  26. [26] K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems. Acta Math.138 (1977) 219–240. Zbl0372.35030MR474389

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.