Non-Newtonian fluids and function spaces

Růžička, Michael; Diening, Lars

  • Nonlinear Analysis, Function Spaces and Applications, Publisher: Institute of Mathematics of the Academy of Sciences of the Czech Republic(Praha), page 95-143

Abstract

top
In this note we give an overview of recent results in the theory of electrorheological fluids and the theory of function spaces with variable exponents. Moreover, we present a detailed and self-contained exposition of shifted N -functions that are used in the studies of generalized Newtonian fluids and problems with p -structure.

How to cite

top

Růžička, Michael, and Diening, Lars. "Non-Newtonian fluids and function spaces." Nonlinear Analysis, Function Spaces and Applications. Praha: Institute of Mathematics of the Academy of Sciences of the Czech Republic, 2007. 95-143. <http://eudml.org/doc/221529>.

@inProceedings{Růžička2007,
abstract = {In this note we give an overview of recent results in the theory of electrorheological fluids and the theory of function spaces with variable exponents. Moreover, we present a detailed and self-contained exposition of shifted $N$-functions that are used in the studies of generalized Newtonian fluids and problems with $p$-structure.},
author = {Růžička, Michael, Diening, Lars},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {Electrorheological fluid; generalized Newtonian fluids; existence theory; function spaces with variable exponents; harmonic analysis; Orlicz spaces; shifted $N$-function},
location = {Praha},
pages = {95-143},
publisher = {Institute of Mathematics of the Academy of Sciences of the Czech Republic},
title = {Non-Newtonian fluids and function spaces},
url = {http://eudml.org/doc/221529},
year = {2007},
}

TY - CLSWK
AU - Růžička, Michael
AU - Diening, Lars
TI - Non-Newtonian fluids and function spaces
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 2007
CY - Praha
PB - Institute of Mathematics of the Academy of Sciences of the Czech Republic
SP - 95
EP - 143
AB - In this note we give an overview of recent results in the theory of electrorheological fluids and the theory of function spaces with variable exponents. Moreover, we present a detailed and self-contained exposition of shifted $N$-functions that are used in the studies of generalized Newtonian fluids and problems with $p$-structure.
KW - Electrorheological fluid; generalized Newtonian fluids; existence theory; function spaces with variable exponents; harmonic analysis; Orlicz spaces; shifted $N$-function
UR - http://eudml.org/doc/221529
ER -

References

top
  1. Jdayil B. Abu,- Brunn P. O., Effects of nonuniform electric field on slit flow of an electrorheological fluid, J. Rheol. 39 (1995), 1327–1341. (1995) 
  2. Jdayil B. Abu,- Brunn P. O., Effects of electrode morphology on the slit flow of an electrorheological fluid, J. Non-New. Fluid Mech. 63 (1996), 45–61. (1996) 
  3. Jdayil B. Abu,- Brunn P. O., Study of the flow behaviour of electrorheological fluids at shear- and flow- mode, Chem. Eng. and Proc. 36 (1997), 281–289. (1997) 
  4. Agmon S., Douglis A., Nirenberg L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. Zbl 0093.10401, MR 23 #A2610. (1959) Zbl0093.10401MR0125307
  5. Bogovskii M. E., Solution of the first boundary value problem for the equation of continuity of an incompressible medium, Dokl. Akad. Nauk SSSR 248 (1979), 1037–1040. English transl. in Soviet Math. Dokl. 20 (1979), 1094–1098. Zbl 0499.35022, MR 82b:35135. (1979) MR0553920
  6. Bogovskii M. E., Solution of some problemsof vector analysis related to the operators div and grad , Trudy Sem. S. L. Soboleva, no. 1, Akad. Nauk SSSR, Sibirsk. Otdel., Inst. Mat., Novosibirsk (1980), 5–40. (1980) MR0631691
  7. Calderón A. P., Zygmund A., On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139. Zbl 0047.10201, MR 14,637f. (1952) MR0052553
  8. Cianchi A., Symmetrization in anisotropic elliptic problems, Preprint, 2006. Zbl1219.35028MR2334829
  9. Uribe D. Cruz,- Fiorenza A., Martell J. M., Pérez C., The boundedeness of classical operators on variable L p spaces, Ann. Acad. Sci. Fenn. Math. 31 (2004), no. 1, 239–264. Zbl 1100.42012, MR 2006m:42029. 
  10. Uribe D. Cruz,- Fiorenza A., Neugebauer C. J., The maximal function on variable L p spaces, Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223–238. Zbl 1037.42023, MR 2004c:42039. MR1976842
  11. Diening L., Maximal function on generalized Lebesgue spaces L p ( · ) , Math. Inequal. Appl. 7 (2004), 245–253. Zbl 1071.42014, MR 2005k:42048. MR2057643
  12. Diening L., Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces L p ( · ) and W k , p ( · ) , Math. Nachr. 268 (2004), 31–43. Zbl 1065.46024, MR 2005d:46071. MR2054530
  13. Diening L., Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math. 129 (2005), no. 8, 657–700. MR 2006e:46032. MR2166733
  14. Diening L., Ebmeyer C., Růžička M., Optimal convergence for the implicit space-time discretization of parabolic systems with p -structure, SIAM J. Numer. Anal. 45 (2007), no. 2, 457–472. MR2300281. Zbl1140.65060MR2300281
  15. Diening L., Ettwein F., Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math. (2006), accepted. Zbl1188.35069MR2418205
  16. Diening L., Kreuzer C., Linear convergence of an adaptive finite element method for the p -Laplacian equation, SIAM J. Numer. Anal. (2007), submitted. Zbl1168.65060MR2383205
  17. Diening L., Málek J., Steinhauer M., On Lipschitz truncations of sobolev functions (with variable exponent) and their selected applications, ESAIM, Control, Optim. Calc. Var. (2006), submitted. Zbl1143.35037MR2394508
  18. Diening L., Růžička M., Error estimates for interpolation operators in Orlicz-Sobolev spaces and quasi norms, Num. Math. (2007), DOI 10.1007/s00211-007-0079-9. 
  19. Diening L., Růžička M., Calderón–Zygmund operators on generalized Lebesgue spaces L p ( · ) and problems related to fluid dynamics, J. Reine Angew. Math. 563 (2003), 197–220. Zbl 1072.76071, MR 2005g:42054. MR2009242
  20. Diening L., Růžička M., Integral operators on the halfspace in generalized Lebesgue spaces L p ( · ) , Part I, J. Math. Anal. Appl. 298 (2004), 559–571. Zbl pre02107284, MR 2005k:47098a. Zbl1128.47044MR2086975
  21. Diening L., Růžička M., Integral operators on the halfspace in generalized Lebesgue spaces L p ( · ) , Part II, J. Math. Anal. Appl. 298 (2004), 572–588. Zbl pre02107285, MR 2005k:47098b. Zbl1128.47044MR2086976
  22. Donaldson T., Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces, J. Differential Equations 10 (1971), 507–528. Zbl 0218.35028, MR 45 #7524. (1971) Zbl0218.35028MR0298472
  23. Eckart W., Theoretische Untersuchungen von elektrorheologischen Flüssigkeiten bei homogenen und inhomogenen elektrischen Feldern, Aachen: Shaker Verlag.Darmstadt: TU Darmstadt, Fachbereich Mathematik, 2000. Zbl 0958.76003. Zbl0958.76003
  24. Ettwein F., Růžička M., Existence of local strong solutions for motions of electrorheological fluids in three dimensions, Comput. Appl. Math. 53 (2007), 595–604. Zbl1122.76092MR2323712
  25. Frehse J., Málek J., Steinhauer M., An existence result for fluids with shear dependent viscosity-steady flows, Nonlinear Anal., Theory Methods Appl. 30 (1997), no. 5, 3041–3049. Zbl 0902.35089, MR 99g:76006. (1997) MR1602949
  26. Frehse J., Málek J., Steinhauer M., On existence results for fluids with shear dependent viscosity – unsteady flows, Partial differential equations: theory and numerical solution. Proceedings of the ICM’98 satellite conference, Praha, 1998 (W. Jäger, J. Nečas, O. John, K. Najzar and J. Stará, eds.) 121–129, Chapman & Hall/CRC Res. Notes Math. 406, Boca Raton, FL, 2000. (1998) MR1713880
  27. Frehse J., Málek J., Steinhauer M., On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method, SIAM J. Math. Anal. 34 (2003), no. 5, 1064–1083 (electronic). Zbl 1050.35080, MR 2005c:76007. Zbl1050.35080MR2001659
  28. Giusti E., Metodi diretti nel calcolo delle variazioni, Unione Matematica Italiana, Bologna, 1994. Zbl 0942.49002, MR 2000f:49001. (1994) Zbl0942.49002MR1707291
  29. Gossez J. P., Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 163–205. Zbl 0239.35045, MR 49 #7598. (190) MR0342854
  30. Halsey T. C., Martin J. E., Adolf D., Rheology of electrorheological fluids, Phys. Rev. Letters 68 (1992), 1519–1522. (1992) 
  31. Huber A., Die Divergenzgleichung in gewichteten Räumen und Flüssigkeiten mit p ( · ) -Struktur, Diplomarbeit, Universität Freiburg, 2005. 
  32. Hudzik H., The problems of separability, duality, reflexivity and of comparison for generalized orlicz-sobolev spaces W m k ( ω ) , Comment. Math. Prace Mat. 21 (1979), 315–324. Zbl 0429.46017, MR 81k:46031. (1979) MR0577521
  33. Kokilashvili V., Krbec M., Weighted inequalities in Lorentz and Orlicz spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 1991. Zbl 0751.46021, 93g:42013. (1991) Zbl0751.46021MR1156767
  34. Kováčik O., Rákosník J., On spaces L p ( x ) and W k , p ( x ) , Czechoslovak Math. J. 41(116) (1991), no. 4, 592–618. Zbl 0784.46029, MR 92m:46047. (1991) 
  35. skii M. A. Krasnosel,’ Rutickii, Ja. B., Convex functions and Orlicz spaces, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961. Zbl 0095.09103, MR 23 #A4016. (1961) MR0126722
  36. Málek J., Nečas J., Rokyta M., Růžička M., Weak and measure-valued solutions to evolutionary PDEs, Applied Mathematics and Mathematical Computations, vol. 13, Chapman & Hall, London, 1996. Zbl 0851.35002, MR 97g:35002. (1996) Zbl0851.35002MR1409366
  37. Marcellini P., Papi G., Nonlinear elliptic systems with general growth, J. Differential Equations 221 (2006), no. 2, 412–443. Zbl pre05012954, 2007a:35024. MR2196484
  38. Milani A., Picard R., Decomposition theorems and their application to non-linear electro- and magneto-static boundary value problems, Partial differential equations and calculus of variations, Lecture Notes Math. 1357, 317–340, Springer, Berlin, 1988, LNM 1357. Zbl 0684.35084, MR 90b:35218. (1988) MR0976242
  39. Muckenhoupt B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. Zbl 0236.26016, MR 45 #2461. (1972) Zbl0236.26016MR0293384
  40. Musielak J., Orlicz W., On modular spaces, Studia Math. 18 (1959), 49–65. Zbl 0086.08901, MR 21 #298. (1959) Zbl0099.09202MR0101487
  41. Musielak J., Orlicz spaces and modular spaces, Lecture Notes Math. 1034. Springer-Verlag, Berlin, 1983. Zbl 0557.46020, MR 85m:46028. (1983) Zbl0557.46020MR0724434
  42. Nakano H., Modulared semi-ordered linear spaces, Tokyo Math. Book Series, Vol. 1. Maruzen Co. Ltd., Tokyo, 1950. Zbl 0041.23401, MR 12,420a. (1950) Zbl0041.23401MR0038565
  43. Nekvinda A., Hardy-Littlewood maximal operator on L p ( x ) ( ) , Math. Inequal. Appl. 7 (2004), no. 2, 255–265. Zbl 1059.42016, MR 2005f:42045. Zbl1059.42016MR2057644
  44. Orlicz W., Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200–211. Zbl 0003.25203. (1931) Zbl0003.25203
  45. Parthasarathy M., Klingenberg D. J., Electrorheology: Mechanism and models, Materials, Sciences and Engineering R 17,2 (1996), 57–103. (1996) 
  46. Pick L., Růžička M., An example of a space L p ( x ) on which the hardy-littlewood maximal operator is not bounded, Expo. Math. 19 (2001), 369–371. Zbl 1003.42013, MR 2002m:42016. MR1876258
  47. Rajagopal K. R., Růžička M., On the modeling of electrorheological materials, Mech. Research Comm. 23 (1996), 401–407. Zbl 0890.76007. (1996) Zbl0890.76007
  48. Rajagopal K. R., Růžička M., Mathematical modeling of electrorheological materials, Cont. Mech. Thermodynamics 13 (2001), 59–78. Zbl 0971.76100. Zbl0971.76100
  49. Růžička M., A note on steady flow of fluids with shear dependent viscosity, Proceedings of the Second World Congress of Nonlinear Analysts, Part 5 (Athens, 1996). Nonlinear Anal., Theory Methods Appl. 30 (1997), no. 5, 3029–3039. Zbl 0906.35076, MR 99g:76005. (1996) MR1602945
  50. Růžička M., Flow of shear dependent electrorheological fluids: unsteady space periodic case, Applied nonlinear analysis (A. Sequeira, ed.), Kluwer/Plenum, New York, 1999, pp. 485–504. Zbl 0954.35138, MR 2001h:76115. (1999) Zbl0954.35138MR1727468
  51. Růžička M., Electrorheological fluids: Modeling and mathematical theory, Lecture Notes in Math. 1748, Springer-Verlag, Berlin, 2000. MR 2002a:76004. Zbl0968.76531MR1810360
  52. Růžička M., Modeling, mathematical and numerical analysis of electrorheological fluids, Appl. Math. 49 (2004), no. 6, 565–609. Zbl 1099.35103, MR 2005i:35223. Zbl1099.35103MR2099981
  53. Samko S. G., Density C 0 ( n ) in the generalized Sobolev spaces W m , p ( x ) ( n ) , Dokl. Akad. Nauk 369 (1999), no. 4, 451–454. Zbl 1052.46028, MR2001a:46036. (1999) MR1748959
  54. Samko S. G., Convolution and potential type operators in L p ( x ) ( n ) , Integral Transform. Spec. Funct. 7 (1998), no. 3-4, 261–284. Zbl 1023.31009, MR 2001d:47076. (1998) MR1775832
  55. Sharapudinov I. I., The basis property of the Haar system in the space p ( t ) ( [ 0 , 1 ] ) and the principle of localization in the mean, Mat. Sb. (N.S.) 130(172) (1986), no. 2, 275–283, 286. English transl. in Math. USSR, Sb. 58 (1987), 279–287. Zbl 0639.42026, MR 88b:42034. (1986) MR0854976
  56. Sharapudinov I. I., On the uniform boundedness in L p ( p = p ( x ) ) of some families of convolution operators, Mat. Zametki 59 (1996), no. 2, 291–302, 320. English transl. in Math. Notes 59 (1996), no. 1-2, 205–212. Zbl 0873.47023, MR 97c:47035. (1996) MR1391844
  57. Talenti G., Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Ann. Mat. Pura Appl., IV. Ser. 120 (1979), 160–184. Zbl 0419.35041, MR 81i:35068. (1979) Zbl0419.35041MR0551065
  58. Wolf J., Existence of weak solutions to the equations of nonstationary motion of non-Newtonian fluids with shear-dependent viscosity, J. Math. Fluid Mech. (2006), no. 1, 104–138. MR2305828. MR2305828
  59. Zhikov V. V., Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675–710, 877. English transl. in Math. USSR Izv. 29 (1987), no. 1, 33–66. Zbl 0599.49031, MR 88a:49026. (1986) Zbl0599.49031MR0864171
  60. Zhikov V. V., Meyer-type estimates for solving the nonlinear Stokes system, Differ. Uravn. 33 (1997), no. 1, 107–114, 143. English transl. in Differential Equations 33 (1997), no. 1, 108–115. Zbl 0911.35089, MR 99b:35170. (1997) MR1607245
  61. Zhikov V. V., On some variational problems, Russian J. Math. Phys. 5 (1997), no. 1, 105–116 (1998). Zbl 0917.49006, MR 98k:49004. (1997) Zbl0917.49006MR1486765

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.