On the continuity of degenerate n-harmonic functions
Flavia Giannetti; Antonia Passarelli di Napoli
ESAIM: Control, Optimisation and Calculus of Variations (2012)
- Volume: 18, Issue: 3, page 621-642
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topGiannetti, Flavia, and Passarelli di Napoli, Antonia. "On the continuity of degenerate n-harmonic functions." ESAIM: Control, Optimisation and Calculus of Variations 18.3 (2012): 621-642. <http://eudml.org/doc/272936>.
@article{Giannetti2012,
abstract = {We study the regularity of finite energy solutions to degenerate n-harmonic equations. The function K(x), which measures the degeneracy, is assumed to be subexponentially integrable, i.e. it verifies the condition exp(P(K)) ∈ Lloc1. The function P(t) is increasing on [0,∞[ and satisfies the divergence condition\begin\{equation\} \int \_1^\infty \frac\{P(t)\}\{t^2\}\,\{\rm d\}t=\infty . \end\{equation\}∫ 1 ∞ P ( t ) t 2 d t = ∞ .},
author = {Giannetti, Flavia, Passarelli di Napoli, Antonia},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Orlicz classes; degenerate elliptic equations; continuity; n-harmonic functions; regularity of solution; finite energy solutions},
language = {eng},
number = {3},
pages = {621-642},
publisher = {EDP-Sciences},
title = {On the continuity of degenerate n-harmonic functions},
url = {http://eudml.org/doc/272936},
volume = {18},
year = {2012},
}
TY - JOUR
AU - Giannetti, Flavia
AU - Passarelli di Napoli, Antonia
TI - On the continuity of degenerate n-harmonic functions
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2012
PB - EDP-Sciences
VL - 18
IS - 3
SP - 621
EP - 642
AB - We study the regularity of finite energy solutions to degenerate n-harmonic equations. The function K(x), which measures the degeneracy, is assumed to be subexponentially integrable, i.e. it verifies the condition exp(P(K)) ∈ Lloc1. The function P(t) is increasing on [0,∞[ and satisfies the divergence condition\begin{equation} \int _1^\infty \frac{P(t)}{t^2}\,{\rm d}t=\infty . \end{equation}∫ 1 ∞ P ( t ) t 2 d t = ∞ .
LA - eng
KW - Orlicz classes; degenerate elliptic equations; continuity; n-harmonic functions; regularity of solution; finite energy solutions
UR - http://eudml.org/doc/272936
ER -
References
top- [1] E. Acerbi and N. Fusco, An approximation lemma for W1,p functions, in Material Instabilities in Continuum Mechanics, J.M. Ball Ed. (Edinburgh, 1985–1986). Oxford University Press, New York (1988). Zbl0644.46026MR970512
- [2] M. Carozza, G. Moscariello and A. Passarelli di Napoli, Regularity for p-harmonic equations with right hand side in Orlicz-Zygmund classes. J. Differ. Equ.242 (2007) 248–268. Zbl1138.35026MR2363315
- [3] F. Gehring, Rings and quasiconformal mapping in the space. Trans. Amer. Math. Soc.103 (1962) 353–393. Zbl0113.05805MR139735
- [4] F. Giannetti and A. Passarelli di Napoli, Isoperimetric type inequalities for differential forms on manifolds. Indiana Univ. Math. J.54 (2005) 1483–1497. Zbl1093.58001MR2177109
- [5] F. Giannetti and A. Passarelli di Napoli, On very weak solutions of degenerate equations. NoDEA14 (2007) 739–751. Zbl1136.35048MR2374208
- [6] F. Giannetti, L. Greco and A. Passarelli di Napoli, The self-improving property of the Jacobian determinant in Orlicz spaces. Indiana Univ. Math. J.59 (2010) 91–114. Zbl1204.46018MR2666474
- [7] F. Giannetti, L. Greco and A. Passarelli di Napoli, Regularity of solutions of degenerate A-harmonic equations. Nonlinear Anal.73 (2010) 2651–2665. Zbl1197.35122MR2674099
- [8] T. Iwaniec and J. Onninen, Continuity estimates for n-harmonic equations. Indiana Univ. Math. J.56 (2007) 805–824. Zbl1127.35013MR2317546
- [9] T. Iwaniec and C. Sbordone, Quasiharmonic fields. Ann. Inst. Henri Poincaré Anal. non Linéaire18 (2001) 519–572. Zbl1068.30011MR1849688
- [10] T. Iwaniec, L. Migliaccio, G. Moscariello and A. Passarelli di Napoli, A priori estimates for nonlinear elliptic complexes. Advances Difference Equ.8 (2003) 513–546. Zbl1290.35074MR1972489
- [11] J. Kauhanen, P. Koskela, J. Maly, J. Onninen and X. Zhong, Mappings of finite distortion : sharp Orlicz conditions. Rev. Mat. Iberoamericana19 (2003) 857–872. Zbl1059.30017MR2053566
- [12] P. Koskela and J. Onninen, Mappings of finite distortion : the sharp modulus of continuity. Trans. Amer. Math. Soc.355 (2003) 1905–1920. Zbl1027.30052MR1953531
- [13] P. Koskela, J. Manfredi and E. Villamor, Regularity theory and traces of 𝒜-harmonic functions. Trans. Amer. Math. Soc. 348 (1996) 755–766. Zbl0849.31015MR1311911
- [14] M.A. Krasnosel’skii and Ya.B. Rutickii, Convex Functions and Orlicz Spaces. P. Noordhoff LTD, Groningen, The Netherlands (1961). Zbl0095.09103
- [15] J. Lewis, On very weak solutions of certain elliptic systems. Commun. Partial. Differ. Equ.18 (1993) 1515–1537. Zbl0796.35061MR1239922
- [16] J. Manfredi, Weakly monotone functions. J. Geom. Anal.4 (1994) 393–402. Zbl0805.35013MR1294334
- [17] G. Moscariello, On the integrability of “finite energy” solutions for p-harmonic equations. NoDEA11 (2004) 393–406. Zbl1102.35039MR2090281
- [18] M.M. Rao and Z.D. Ren, Theory of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics 146. Marcel Dekker, Inc., New York (1991). Zbl0724.46032MR1113700
- [19] G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus. Semin. de Math. Supérieures 16, Univ. de Montréal (1966). Zbl0151.15501MR251373
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.