# On the continuity of degenerate n-harmonic functions

• Volume: 18, Issue: 3, page 621-642
• ISSN: 1292-8119

top

## Abstract

top
We study the regularity of finite energy solutions to degenerate n-harmonic equations. The function K(x), which measures the degeneracy, is assumed to be subexponentially integrable, i.e. it verifies the condition exp(P(K)) ∈ Lloc1. The function P(t) is increasing on  [0,∞[  and satisfies the divergence condition${\int }_{1}^{\infty }\frac{P\left(t\right)}{{t}^{2}}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}t=\infty .$∫ 1 ∞ P ( t ) t 2   d t = ∞ .

## How to cite

top

Giannetti, Flavia, and Passarelli di Napoli, Antonia. "On the continuity of degenerate n-harmonic functions." ESAIM: Control, Optimisation and Calculus of Variations 18.3 (2012): 621-642. <http://eudml.org/doc/272936>.

@article{Giannetti2012,
abstract = {We study the regularity of finite energy solutions to degenerate n-harmonic equations. The function K(x), which measures the degeneracy, is assumed to be subexponentially integrable, i.e. it verifies the condition exp(P(K)) ∈ Lloc1. The function P(t) is increasing on  [0,∞[  and satisfies the divergence condition\begin\{equation\} \int \_1^\infty \frac\{P(t)\}\{t^2\}\,\{\rm d\}t=\infty . \end\{equation\}∫ 1 ∞ P ( t ) t 2   d t = ∞ .},
author = {Giannetti, Flavia, Passarelli di Napoli, Antonia},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Orlicz classes; degenerate elliptic equations; continuity; n-harmonic functions; regularity of solution; finite energy solutions},
language = {eng},
number = {3},
pages = {621-642},
publisher = {EDP-Sciences},
title = {On the continuity of degenerate n-harmonic functions},
url = {http://eudml.org/doc/272936},
volume = {18},
year = {2012},
}

TY - JOUR
AU - Giannetti, Flavia
AU - Passarelli di Napoli, Antonia
TI - On the continuity of degenerate n-harmonic functions
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2012
PB - EDP-Sciences
VL - 18
IS - 3
SP - 621
EP - 642
AB - We study the regularity of finite energy solutions to degenerate n-harmonic equations. The function K(x), which measures the degeneracy, is assumed to be subexponentially integrable, i.e. it verifies the condition exp(P(K)) ∈ Lloc1. The function P(t) is increasing on  [0,∞[  and satisfies the divergence condition$$\int _1^\infty \frac{P(t)}{t^2}\,{\rm d}t=\infty .$$∫ 1 ∞ P ( t ) t 2   d t = ∞ .
LA - eng
KW - Orlicz classes; degenerate elliptic equations; continuity; n-harmonic functions; regularity of solution; finite energy solutions
UR - http://eudml.org/doc/272936
ER -

## References

top
1. [1] E. Acerbi and N. Fusco, An approximation lemma for W1,p functions, in Material Instabilities in Continuum Mechanics, J.M. Ball Ed. (Edinburgh, 1985–1986). Oxford University Press, New York (1988). Zbl0644.46026MR970512
2. [2] M. Carozza, G. Moscariello and A. Passarelli di Napoli, Regularity for p-harmonic equations with right hand side in Orlicz-Zygmund classes. J. Differ. Equ.242 (2007) 248–268. Zbl1138.35026MR2363315
3. [3] F. Gehring, Rings and quasiconformal mapping in the space. Trans. Amer. Math. Soc.103 (1962) 353–393. Zbl0113.05805MR139735
4. [4] F. Giannetti and A. Passarelli di Napoli, Isoperimetric type inequalities for differential forms on manifolds. Indiana Univ. Math. J.54 (2005) 1483–1497. Zbl1093.58001MR2177109
5. [5] F. Giannetti and A. Passarelli di Napoli, On very weak solutions of degenerate equations. NoDEA14 (2007) 739–751. Zbl1136.35048MR2374208
6. [6] F. Giannetti, L. Greco and A. Passarelli di Napoli, The self-improving property of the Jacobian determinant in Orlicz spaces. Indiana Univ. Math. J.59 (2010) 91–114. Zbl1204.46018MR2666474
7. [7] F. Giannetti, L. Greco and A. Passarelli di Napoli, Regularity of solutions of degenerate A-harmonic equations. Nonlinear Anal.73 (2010) 2651–2665. Zbl1197.35122MR2674099
8. [8] T. Iwaniec and J. Onninen, Continuity estimates for n-harmonic equations. Indiana Univ. Math. J.56 (2007) 805–824. Zbl1127.35013MR2317546
9. [9] T. Iwaniec and C. Sbordone, Quasiharmonic fields. Ann. Inst. Henri Poincaré Anal. non Linéaire18 (2001) 519–572. Zbl1068.30011MR1849688
10. [10] T. Iwaniec, L. Migliaccio, G. Moscariello and A. Passarelli di Napoli, A priori estimates for nonlinear elliptic complexes. Advances Difference Equ.8 (2003) 513–546. Zbl1290.35074MR1972489
11. [11] J. Kauhanen, P. Koskela, J. Maly, J. Onninen and X. Zhong, Mappings of finite distortion : sharp Orlicz conditions. Rev. Mat. Iberoamericana19 (2003) 857–872. Zbl1059.30017MR2053566
12. [12] P. Koskela and J. Onninen, Mappings of finite distortion : the sharp modulus of continuity. Trans. Amer. Math. Soc.355 (2003) 1905–1920. Zbl1027.30052MR1953531
13. [13] P. Koskela, J. Manfredi and E. Villamor, Regularity theory and traces of &#x1d49c;-harmonic functions. Trans. Amer. Math. Soc. 348 (1996) 755–766. Zbl0849.31015MR1311911
14. [14] M.A. Krasnosel’skii and Ya.B. Rutickii, Convex Functions and Orlicz Spaces. P. Noordhoff LTD, Groningen, The Netherlands (1961). Zbl0095.09103
15. [15] J. Lewis, On very weak solutions of certain elliptic systems. Commun. Partial. Differ. Equ.18 (1993) 1515–1537. Zbl0796.35061MR1239922
16. [16] J. Manfredi, Weakly monotone functions. J. Geom. Anal.4 (1994) 393–402. Zbl0805.35013MR1294334
17. [17] G. Moscariello, On the integrability of “finite energy” solutions for p-harmonic equations. NoDEA11 (2004) 393–406. Zbl1102.35039MR2090281
18. [18] M.M. Rao and Z.D. Ren, Theory of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics 146. Marcel Dekker, Inc., New York (1991). Zbl0724.46032MR1113700
19. [19] G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus. Semin. de Math. Supérieures 16, Univ. de Montréal (1966). Zbl0151.15501MR251373

## NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.