Approximation by finitely supported measures
ESAIM: Control, Optimisation and Calculus of Variations (2012)
- Volume: 18, Issue: 2, page 343-359
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topKloeckner, Benoît. "Approximation by finitely supported measures." ESAIM: Control, Optimisation and Calculus of Variations 18.2 (2012): 343-359. <http://eudml.org/doc/277817>.
@article{Kloeckner2012,
abstract = {We consider the problem of approximating a probability measure defined on a metric space
by a measure supported on a finite number of points. More specifically we seek the
asymptotic behavior of the minimal Wasserstein distance to an approximation when the
number of points goes to infinity. The main result gives an equivalent when the space is a
Riemannian manifold and the approximated measure is absolutely continuous and compactly
supported. },
author = {Kloeckner, Benoît},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Measures; Wasserstein distance; quantization; location problem; centroidal Voronoi tessellations; measures},
language = {eng},
month = {7},
number = {2},
pages = {343-359},
publisher = {EDP Sciences},
title = {Approximation by finitely supported measures},
url = {http://eudml.org/doc/277817},
volume = {18},
year = {2012},
}
TY - JOUR
AU - Kloeckner, Benoît
TI - Approximation by finitely supported measures
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2012/7//
PB - EDP Sciences
VL - 18
IS - 2
SP - 343
EP - 359
AB - We consider the problem of approximating a probability measure defined on a metric space
by a measure supported on a finite number of points. More specifically we seek the
asymptotic behavior of the minimal Wasserstein distance to an approximation when the
number of points goes to infinity. The main result gives an equivalent when the space is a
Riemannian manifold and the approximated measure is absolutely continuous and compactly
supported.
LA - eng
KW - Measures; Wasserstein distance; quantization; location problem; centroidal Voronoi tessellations; measures
UR - http://eudml.org/doc/277817
ER -
References
top- G. Bouchitté, C. Jimenez and M. Rajesh, Asymptotique d’un problème de positionnement optimal. C. R. Math. Acad. Sci. Paris335 (2002) 853–858.
- A. Brancolini, G. Buttazzo, F. Santambrogio and E. Stepanov, Long-term planning versus short-term planning in the asymptotical location problem. ESAIM : COCV15 (2009) 509–524.
- T. Champion, L. De Pascale and P. Juutinen, The ∞-Wasserstein distance : local solutions and existence of optimal transport maps. SIAM J. Math. Anal.40 (2008) 1–20.
- V. Dobrić and J.E. Yukich, Asymptotics for transportation cost in high dimensions. J. Theoret. Probab.8 (1995) 97–118.
- Q. Du and D. Wang, The optimal centroidal Voronoi tessellations and the Gersho’s conjecture in the three-dimensional space. Comput. Math. Appl.49 (2005) 1355–1373.
- Q. Du, V. Faber and M. Gunzburger, Centroidal Voronoi tessellations : applications and algorithms. SIAM Rev.41 (1999) 637–676.
- K.J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics85. Cambridge University Press (1986).
- L. Fejes Tóth, Sur la représentation d’une population infinie par un nombre fini d’éléments. Acta. Math. Acad. Sci. Hungar10 (1959) 299–304.
- L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum, Die Grundlehren der mathematischen Wissenschaften, Band65. Zweite verbesserte und erweiterte Auflage, Springer-Verlag (1972).
- S. Graf and H. Luschgy, Foundations of quantization for probability distributions, Lecture Notes in Mathematics1730. Springer-Verlag (2000).
- J. Heinonen, Lectures on analysis on metric spaces. Universitext, Springer-Verlag (2001).
- J. Horowitz and R.L. Karandikar, Mean rates of convergence of empirical measures in the Wasserstein metric. J. Comput. Appl. Math.55 (1994) 261–273.
- J.E. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J.30 (1981) 713–747.
- F. Morgan and R. Bolton, Hexagonal economic regions solve the location problem. Amer. Math. Monthly109 (2002) 165–172.
- S.J.N. Mosconi and P. Tilli, Γ-convergence for the irrigation problem. J. Convex Anal.12 (2005) 145–158.
- D.J. Newman, The hexagon theorem. IEEE Trans. Inform. Theory28 (1982) 137–139.
- C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics58. American Mathematical Society (2003).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.