Minimal 2-dominating sets in trees
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2013)
- Volume: 47, Issue: 3, page 235-240
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topKrzywkowski, Marcin. "Minimal 2-dominating sets in trees." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 47.3 (2013): 235-240. <http://eudml.org/doc/273012>.
@article{Krzywkowski2013,
abstract = {We provide an algorithm for listing all minimal 2-dominating sets of a tree of order n in time 𝒪(1.3248n). This implies that every tree has at most 1.3248n minimal 2-dominating sets. We also show that this bound is tight.},
author = {Krzywkowski, Marcin},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {domination; 2-domination; minimal 2-dominating set; tree; counting; exact exponential algorithm; listing algorithm},
language = {eng},
number = {3},
pages = {235-240},
publisher = {EDP-Sciences},
title = {Minimal 2-dominating sets in trees},
url = {http://eudml.org/doc/273012},
volume = {47},
year = {2013},
}
TY - JOUR
AU - Krzywkowski, Marcin
TI - Minimal 2-dominating sets in trees
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 3
SP - 235
EP - 240
AB - We provide an algorithm for listing all minimal 2-dominating sets of a tree of order n in time 𝒪(1.3248n). This implies that every tree has at most 1.3248n minimal 2-dominating sets. We also show that this bound is tight.
LA - eng
KW - domination; 2-domination; minimal 2-dominating set; tree; counting; exact exponential algorithm; listing algorithm
UR - http://eudml.org/doc/273012
ER -
References
top- [1] A. Björklund and T. Husfeldt, Inclusion-exclusion algorithms for counting set partitions. Proc. of FOCS (2006) 575–582.
- [2] M. Blidia, O. Favaron and R. Lounes, Locating-domination, 2-domination and independence in trees. Australas. J. Combin. 42 (2008) 309–316. Zbl1153.05039MR2445823
- [3] D. Bród and Z. Skupień, Trees with extremal numbers of dominating sets. Australas. J. Combin.35 (2006) 273–290. Zbl1094.05017MR2239321
- [4] D. Bród, A. Włoch and I. Włoch, On the number of minimal dominating sets including the set of leaves in trees. Internat. J. Contemporary Math. Sci.4 (2009) 1739–1748. Zbl1219.05113MR2674931
- [5] J.-F. Couturier, P. Heggernes, P. van ’t Hof and D. Kratsch, Minimal dominating sets in graph classes: combinatorial bounds and enumeration. Proc. of SOFSEM 2012, Lect. Notes Comput. Sci., vol. 7147. Springer-Verlag, Berlin (2012) 202–213. Zbl1298.05246MR2958175
- [6] D. Eppstein, Small maximal independent sets and faster exact graph coloring, J. Graph Algorithms Appl.7 (2003) 131–140. Zbl1027.05092MR2112051
- [7] J. Fink and M. Jacobson, n-domination in graphs, Graph Theory with Applications to Algorithms and Computer Science. Wiley, New York (1985) 282−300. Zbl0573.05049MR812671
- [8] F. Fomin, F. Grandoni, A. Pyatkin and A. Stepanov, Combinatorial bounds via measure and conquer: bounding minimal dominating sets and applications. ACM Transactions on Algorithms, vol. 5, article 9 (2009). MR2479180
- [9] F. Fomin and D. Kratsch, Exact Exponential Algorithms. Springer, Berlin (2010). Zbl05817382MR3234973
- [10] J. Fujisawa, A. Hansberg, T. Kubo, A. Saito, M. Sugita and L. Volkmann, Independence and 2-domination in bipartite graphs. Australas. J. Combin.40 (2008) 265–268. Zbl1147.05052MR2381434
- [11] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998). Zbl0883.00011MR1605684
- [12] T. Haynes, S. Hedetniemi and P. Slater, Domination in Graphs: Advanced Topics. Marcel Dekker, New York (1998). Zbl0883.00011MR1605685
- [13] M. Kanté, V. Limouzy, A. Mary and L. Nourine, Enumeration of minimal dominating sets and variants, Fundamentals of computation theory. Lect. Notes Comput. Sci., vol. 6914. Springer, Heidelberg (2011) 298–309. Zbl05940784MR2886915
- [14] M. Koivisto, An 𝒪(2n) algorithm for graph coloring and other partitioning problems via inclusion-exclusion. Proc. 47th Annual IEEE Symposium on Foundations of Comput. Sci. (FOCS 2006), IEEE (2006) 583–590.
- [15] E. Lawler, A note on the complexity of the chromatic number problem. Information Proc. Lett.5 (1976) 66–67. Zbl0336.68021MR464675
- [16] J. Moon and L. Moser, On cliques in graphs. Israel J. Math.3 (1965) 23–28. Zbl0144.23205MR182577
- [17] R. Shaheen, Bounds for the 2-domination number of toroidal grid graphs. Internat. J. Comput. Math.86 (2009) 584–588. Zbl1162.05036MR2514154
- [18] H. Wilf, The number of maximal independent sets in a tree. SIAM J. Algebr. Discrete Methods7 (1986) 125–130. Zbl0584.05024MR819714
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.