The compositional construction of Markov processes II
L. de Francesco Albasini; N. Sabadini; R. F. C. Walters
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (2011)
- Volume: 45, Issue: 1, page 117-142
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topde Francesco Albasini, L., Sabadini, N., and Walters, R. F. C.. "The compositional construction of Markov processes II." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 45.1 (2011): 117-142. <http://eudml.org/doc/273076>.
@article{deFrancescoAlbasini2011,
abstract = {We add sequential operations to the categorical algebra of weighted and Markov automata introduced in [L. de Francesco Albasini, N. Sabadini and R.F.C. Walters,
arXiv:0909.4136]. The extra expressiveness of the algebra permits the description of hierarchical systems, and ones with evolving geometry. We make a comparison with the probabilistic automata of Lynch et al. [SIAM J. Comput. 37 (2007) 977–1013].},
author = {de Francesco Albasini, L., Sabadini, N., Walters, R. F. C.},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {categorical algebra; Markov process; weighted automaton; hierarchical; distributed; probabilistic automata},
language = {eng},
number = {1},
pages = {117-142},
publisher = {EDP-Sciences},
title = {The compositional construction of Markov processes II},
url = {http://eudml.org/doc/273076},
volume = {45},
year = {2011},
}
TY - JOUR
AU - de Francesco Albasini, L.
AU - Sabadini, N.
AU - Walters, R. F. C.
TI - The compositional construction of Markov processes II
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2011
PB - EDP-Sciences
VL - 45
IS - 1
SP - 117
EP - 142
AB - We add sequential operations to the categorical algebra of weighted and Markov automata introduced in [L. de Francesco Albasini, N. Sabadini and R.F.C. Walters,
arXiv:0909.4136]. The extra expressiveness of the algebra permits the description of hierarchical systems, and ones with evolving geometry. We make a comparison with the probabilistic automata of Lynch et al. [SIAM J. Comput. 37 (2007) 977–1013].
LA - eng
KW - categorical algebra; Markov process; weighted automaton; hierarchical; distributed; probabilistic automata
UR - http://eudml.org/doc/273076
ER -
References
top- [1] C. Baier, M. Grösser and F. Ciesinski, Model checking linear-time properties of probabilistic systems. Handbook of Weighted Automata. EATCS Monographs in Theoretical Computer Science (2009), 519–596. MR2777739
- [2] A. Blass, Seven trees in one. J. Pure Appl. Algebra103 (1991) 1–21. Zbl0846.18002MR1354064
- [3] S.L. Bloom and Z. Ésik, Iteration Theories. EATCS Monographs on Theoretical Computer Science (1993). Zbl0773.03033MR1295433
- [4] R. Blute, A. Edalat and P. Panangaden, Bisimulation for Labelled Markov Processes, Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science (1997), 95–106. Zbl1096.68103
- [5] A. Carboni and R.F.C. Walters, Cartesian bicategories I. J. Pure Appl. Algebra49 (1987) 11–32. Zbl0637.18003MR920513
- [6] B. Coecke and D. Pavlovic, Quantum measurements without sums, in Mathematics of Quantum Computing and Technology. G. Chen, L. Kauffman and S. Lamonaco, Eds. Chapman & Hall (2007), 567–604. Zbl1139.81307MR2422232
- [7] B. Coecke and S. Perdrix, Environment and classical channels in categorical quantum mechanics. arXiv:1004.1598 (2010). Zbl1287.81038MR2755305
- [8] L. de Francesco Albasini, N. Sabadini and R.F.C. Walters, The parallel composition of processes, ART 2008. Analysing Reduction systems using Transition systems, Forum, Udine (2008), 111–121 (also arXiv:0904.3961).
- [9] L. de Francesco Albasini, N. Sabadini and R.F.C. Walters, The compositional construction of Markov processes. arXiv:0901.2434. Zbl1225.18006
- [10] L. de Francesco Albasini, N. Sabadini and R.F.C. Walters, Cospans and spans of graphs: a categorical algebra for the sequential and parallel composition of discrete systems. arXiv:0909.4136.
- [11] M. Droste, W. Kuich and H. Vogler, Eds., Handbook of Weighted Automata. EATCS Monographs in Theoretical Computer Science (2009). Zbl1200.68001MR2777706
- [12] S. Eilenberg, Automata, Languages, and Machines A. Academic Press, New York (1974). Zbl0359.94067MR530382
- [13] D. Harel, Statecharts: a visual formalism for complex systems. Sci. Comput. Program.8 (1987) 231–274. Zbl0637.68010MR896004
- [14] M. Hasegawa, On traced monoidal closed categories. Math. Struct. Comput. Sci.19 (2009) 217–244. Zbl1165.18007MR2496357
- [15] J. Hillston, A Compositional Approach to Performance Modelling. Cambridge University Press (1996). Zbl1080.68003MR1427945
- [16] C.A.R. Hoare, Communicating Sequential Processes. Prentice Hall (1985). Zbl0841.68042MR805324
- [17] A. Joyal, R. Street and D. Verity, Traced monoidal categories. Math. Proc. Cambridge Philos. Soc.119 (1996) 447–468. Zbl0845.18005MR1357057
- [18] P. Katis, N. Sabadini and R.F.C. Walters, Span (Graph): A categorical algebra of transition systems, Proc. AMAST '97, SLNCS, Vol. 1349. Springer Verlag (1997), 307–321. Zbl0885.18004
- [19] P. Katis, N. Sabadini and R.F.C. Walters, A formalisation of the IWIM Model. A. Porto and G.-C. Roman, Eds., in Proc. Coordination 2000. Lecture Notes in Computer Science 1906 (2000) 267–283.
- [20] J. Kock, Frobenius algebras and 2D topological Quantum Field Theories. Cambridge University Press (2004). Zbl1046.57001MR2037238
- [21] F.W. Lawvere, Some remarks on the future of category theory, Proceedings Category Theory 1990. Lecture Notes in Mathematics 1488 (1991) 1–13. Zbl0779.18001MR1173000
- [22] N.A. Lynch, R. Segala and F.W. Vaandrager, Observing branching structure through probabilistic contexts. SIAM J. Comput.37 (2007) 977–1013. Zbl1156.68020MR2366211
- [23] R. Milner, A Calculus of Communicating Systems. Springer Verlag (1980). Zbl0452.68027MR590046
- [24] A. Pnueli and L. Zuck, Probabilistic verification by tableaux, in Proceedings LICS'86. IEEE Computer Society Press (1986), 322–331. Zbl0797.68112
- [25] M.O. Rabin, Probabilistic Automata. Inform. Control6 (1963) 230–245. Zbl0182.33602
- [26] R. Rosebrugh, N. Sabadini and R.F.C. Walters, Generic commutative separable algebras and cospans of graphs. Theory and Applications of Categories15 (2005) 264–177. Zbl1087.18003MR2210579
- [27] R. Segala, Modeling and Verification of Randomized Distributed Real-Time Systems, Ph.D. thesis, MIT Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA (1995). Also, Technical Report MIT/LCS/TR-676.
- [28] P. Sobociński, A non-interleaving process calculus for multi-party synchronisation, Procedings ICE '09 (2009).
- [29] A. Sokolova and E.P. de Vink, Probabilistic automata: system types, parallel composition and comparison. Lecture Notes in Computer Science2925 (2004) 1–43. Zbl1203.68089
- [30] Gh. Stefanescu, Network Algebra. Springer Verlag (2000). Zbl0956.68002MR1753209
- [31] R.J. van Glabbeek, S.A. Smolka and B. Steffen, Reactive, generative and stratified models of probabilistic processes. Inform. Comput. (1995). Zbl0832.68042MR1347332
- [32] M. Vardi, Automatic verification of probabilistic concurrent finite-state programs, in Proceedings FOCS'85. IEEE Computer Society Press (1985), 327–338.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.